Advertisement

Foundations of Physics Letters

, Volume 18, Issue 2, pp 123–138 | Cite as

Bohmian Particle Trajectories in Relativistic Fermionic Quantum Field Theory

  • Hrvoje NikolićEmail author
Original Article

No Heading

The de Broglie-Bohm interpretation of quantum mechanics and quantum field theory is generalized in such a way that it describes trajectories of relativistic fermionic particles and antiparticles and provides a causal description of the processes of their creation and destruction. A general method of causal interpretation of quantum systems is developed and applied to a causal interpretation of fermionic quantum field theory represented by e-number valued wave functionals.

Key words:

de Broglie-Bohm interpretation particle trajectory fermion quantum field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. D. Bohm, Phys. Rev. 85, 166, 180 (1952).Google Scholar
  2. 2.
    2. D. Bohm and B. J. Hiley, Phys. Rep. 144, 323 (1987).Google Scholar
  3. 3.
    3. D. Bohm, B. J. Hiley, and P. N. Kaloyerou, Phys. Rep. 144, 349 (1987).Google Scholar
  4. 4.
    4. P. R. Holland, Phys. Rep. 224, 95 (1993).Google Scholar
  5. 5.
    5. P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993).Google Scholar
  6. 6.
    6. P. R. Holland, Found. Phys. 22, 1287 (1992).Google Scholar
  7. 7.
    7. C. Dewdney, G. Horton, M. M. Lam, Z. Malik, and M. Schmidt, Found. Phys. 22, 1217 (1992).Google Scholar
  8. 8.
    8. P. R. Holland, Phys. Lett. A 128, 9 (1988).Google Scholar
  9. 9.
    9. S. Colin, Phys. Lett. A 317, 349 (2003).Google Scholar
  10. 10.
    10. J. S. Bell, Phys. Rep. 137, 49 (1986).CrossRefGoogle Scholar
  11. 11.
    11. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
  12. 12.
    12. H. Nikolić, Found. Phys. Lett. 17, 363 (2004).Google Scholar
  13. 13.
    13. H. Nikolić, Phys. Lett. B 527, 119 (2002); erratum 529, 265 (2002).Google Scholar
  14. 14.
    14. H. Nikolić, Int. J. Mod. Phys. D 12, 407 (2003).Google Scholar
  15. 15.
    15. H. Nikolić, hep-th/0205022, to appear in Gen. Rel. Grav.Google Scholar
  16. 16.
    16. R. Floreanini and R. Jackiw, Phys. Rev. D 37, 2206 (1988).Google Scholar
  17. 17.
    17. C. Kiefer and A. Wipf, Ann. Phys. 236, 241 (1994).Google Scholar
  18. 18.
    18. J. Hallin and P. Liljenberg, Phys. Rev. D 52, 1150 (1995).Google Scholar
  19. 19.
    19. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).Google Scholar
  20. 20.
    20. D. V. Long and G. M. Shore, Nucl. Phys. B 530, 247 (1998).Google Scholar
  21. 21.
    21. H. Nikolić, quant-ph/0305131.Google Scholar
  22. 22.
    22. R. A. Hyman, S. A. Caldwell, and E. Dalton, quant-ph/0401008.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations