Foundations of Physics Letters

, Volume 18, Issue 6, pp 549–561 | Cite as

Relativistic Quantum Mechanics and the Bohmian Interpretation

Original Paper

No Heading

Conventional relativistic quantum mechanics, based on the Klein-Gordon equation, does not possess a natural probabilistic interpretation in configuration space. The Bohmian interpretation, in which probabilities play a secondary role, provides a viable interpretation of relativistic quantum mechanics. We formulate the Bohmian interpretation of many-particle wave functions in a Lorentz-covariant way. In contrast with the nonrelativistic case, the relativistic Bohmian interpretation may lead to measurable predictions on particle positions even when the conventional interpretation does not lead to such predictions.

Key words:

relativistic quantum mechanics Klein-Gordon equation Bohmian interpretation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).Google Scholar
  2. 2.
    2. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).Google Scholar
  3. 3.
    3. D. Bohm, Phys. Rev. 85, 166, 180 (1952).ADSMATHMathSciNetGoogle Scholar
  4. 4.
    4. D. Bohm and B. J. Hiley, Phys. Rep. 144, 323 (1987).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    5. D. Bohm, B. J. Hiley, and P. N. Kaloyerou, Phys. Rep. 144, 349 (1987).CrossRefMathSciNetGoogle Scholar
  6. 6.
    6. P. R. Holland, Phys. Rep. 224, 95 (1993).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    7. P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993).Google Scholar
  8. 8.
    8. H. Nikolić, Phys. Lett. B 527, 119 (2002); Erratum 529, 265 (2002).ADSMathSciNetGoogle Scholar
  9. 9.
    9. H. Nikolić, Int. J. Mod. Phys. D 12, 407 (2003).ADSGoogle Scholar
  10. 10.
    10. H. Nikolić, hep-th/0205022, to appear in Gen. Rel. Grav.Google Scholar
  11. 11.
    11. H. Nikolić, Found. Phys. Lett. 17, 363 (2004).MathSciNetGoogle Scholar
  12. 12.
    12. H. Nikolić, quant-ph/0302152, to appear in Found. Phys. Lett.Google Scholar
  13. 13.
    13. H. Nikolić, quant-ph/0307179.Google Scholar
  14. 14.
    14. K. Berndl, D. Dürr, S. Goldstein, and N. Zanghì, Phys. Rev. A 53, 2062 (1996).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    15. S. Liberati, S. Sonego, and M. Visser, Ann. Phys. 298, 167 (2002).ADSMathSciNetGoogle Scholar
  16. 16.
    16. H. Nikolić, gr-qc/0403121.Google Scholar
  17. 17.
    17. C. G. B. Garrett and D. E. McCumber, 1970 Phys. Rev. A 1, 305 (1970).CrossRefADSGoogle Scholar
  18. 18.
    18. S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).ADSGoogle Scholar
  19. 19.
    19. I. T. Drummond and S. J. Hathrell, Phys. Rev. D 22, 343 (1980).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    20. K. Scharnhorst, Phys. Lett. B 22, 354 (1990).ADSGoogle Scholar
  21. 21.
    21. T. Y. Chiao, Phys. Rev. A 48, R34 (1993).CrossRefADSGoogle Scholar
  22. 22.
    22. E. Bolda, R. Y. Chiao, and J. C. Garrison, Phys. Rev. A 48, 3890 (1993).CrossRefADSGoogle Scholar
  23. 23.
    23. R. Y. Chiao, A. E. Kozhekin, and G. Kurizki, Phys. Rev. Lett. 77, 1254 (1996).CrossRefADSGoogle Scholar
  24. 24.
    24. N. Bilić and H. Nikolić, Phys. Rev. D 68, 085008 (2003).ADSGoogle Scholar
  25. 25.
    25. D. Dürr, S. Goldstein, K. Münch-Berndl, and N. Zanghì, Phys. Rev. A 60, 2729 (1999).ADSGoogle Scholar
  26. 26.
    26. K. Kuchař, in: Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics (World Scientific, Singapore, 1992).Google Scholar
  27. 27.
    27. C. J. Isham, gr-qc/9210011.Google Scholar
  28. 28.
    28. P. Holland, Phys. Rev. A 60, 4326 (1999).CrossRefADSGoogle Scholar
  29. 29.
    29. P. R. Holland and J. P. Vigier, Nuovo Cimento 88B, 20 (1985).MathSciNetGoogle Scholar
  30. 30.
    30. C. L. Lopreore and R. E. Wyatt, Phys. Rev. Lett. 82, 5190 (1999).CrossRefADSGoogle Scholar
  31. 31.
    31. D. Dürr, S. Goldstein, and N. Zanghì, J. Stat. Phys. 67, 843 (1992).Google Scholar
  32. 32.
    32. D. Dürr, S. Goldstein, and N. Zanghì, Phys. Lett. A 172, 6 (1992).ADSMathSciNetGoogle Scholar
  33. 33.
    33. A. Valentini, Phys. Lett. A 156, 5 (1991).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    34. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York, 1961).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations