Foundations of Physics Letters

, Volume 18, Issue 6, pp 499–518

The Status of the Wave Function in Dynamical Collapse Models

  • Fay Dowker
  • Isabelle Herbauts
Original Paper

No Heading

The idea that in dynamical wave function collapse models the wave function is superfluous is investigated. Evidence is presented for the conjecture that, in a model of a field theory on a 1+1 lightcone lattice, knowing the field configuration on the lattice back to some time in the past, allows the wave function or quantum state at the present moment to be calculated, to arbitrary accuracy so long as enough of the past field configuration is known.

Key words:

wave function collapse lightcone field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    1. L. Diósi, “Continuous quantum measurement and Itô formalism,” Phys. Lett. A129 (1988) 419–423.ADSGoogle Scholar
  2. 2.
    2. G. C. Ghirardi, A. Rimini, and T. Weber, “A unified dynamics for micro and macro systems,” Phys. Rev. D34 (1986) 470.ADSMathSciNetGoogle Scholar
  3. 3.
    3. R. Tumulka, “A relativistic version of the Ghirardi-Rimini-Weber model,” http://xxx.lanl.gov/abs/quant-ph/0406094quant-ph/040 6094.Google Scholar
  4. 4.
    4. P. Pearle, “Combining stochastic dynamical state-vector reduction with spontaneous localization,” Phys. Rev. A 39 (1989) 2277.CrossRefADSGoogle Scholar
  5. 5.
    5. G. Ghirardi, P. Pearle, and A. Rimini, “Markov processes in Hilbert space and continuous spontaneous localisation of systems of identical particles,” Phys. Rev. A 42 (1990) 78.ADSMathSciNetGoogle Scholar
  6. 6.
    6. J. Bell, Speakable and Unspeakable in Quantum Mechanics (University Press, Cambridge, 1987), Chap. 22.Google Scholar
  7. 7.
    7. L. Diósi, “Localized solution of a simple nonlinear quantum Langevin equation,” Phys. Lett. A132 (1988) 233–236.ADSGoogle Scholar
  8. 8.
    8. F. Dowker and J. Henson, “A spontaneous collapse model on a lattice,” J. Stat. Phys.115 (2004) 1349, [http://xxx.lanl.gov/abs/ quant-ph/0209051quant-ph/0209051].CrossRefMathSciNetGoogle Scholar
  9. 9.
    9. F. Dowker and I. Herbauts, “Simulating causal wave-function collapse models,” Class. Quant. Grav. 21 (2004) 1–17; http://xxx.lanl.gov/abs/quant-ph/0401075quant-ph/0401075.MathSciNetGoogle Scholar
  10. 10.
    10. L. Diósi, Talk at ‚Quantum Theory Without Observers II,‛ Bielefeld, Germany, 2–6 February 2004.Google Scholar
  11. 11.
    11. A. Kent, “‚Quantum jumps‛ and indistinguishability,” Mod. Phys. Lett. A4 (1989) 1839.MathSciNetGoogle Scholar
  12. 12.
    12. R. B. Griffiths, “Consistent histories and the interpretation of quantum mechanics,” J. Statist. Phys. 36 (1984) 219–272.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    13. R. Omnès, “Logical reformulation of quantum mechanics. 1. Foundations,” J. Stat. Phys. 53 (1988) 893–932.MATHGoogle Scholar
  14. 14.
    14. M. Gell-Mann and J. B. Hartle, “Quantum mechanics in the light of quantum cosmology,” in Complexity, Entropy and the Physics of Information, SFI Studies in the Sciences of Complexity, Vol VIII, W. Zurek, ed., pp. 150–173 (Addison-Wesley, Reading, MA, 1990).Google Scholar
  15. 15.
    15. J. B. Hartle, “Space-time quantum mechanics and the quantum mechanics of space-time,” in Proceedings of the Les Houches Summer School on Gravitation and Quantizations, Les Houches, France, 6 Jul – 1 Aug 1992, J. Zinn-Justin and B. Julia, eds. (North-Holland, Amderdam, 1995); http://xxx.lanl.gov/abs/grqc/9304006gr-qc/9304006.Google Scholar
  16. 16.
    16. R. D. Sorkin, “Quantum mechanics as quantum measure theory,” Mod. Phys. Lett. A 9 (1994) 3119–3128; http://xxx.lanl.gov/abs/gr-qc/9401003gr-qc/9401003.MATHMathSciNetGoogle Scholar
  17. 17.
    17. R. D. Sorkin, “Quantum measure theory and its interpretation,” in Quantum Classical Correspondence: Proceedings of 4th Drexel Symposium on Quantum Nonintegrability, September 8–11 1994, Philadelphia, PA, D. Feng and B.-L. Hu, eds. (International Press, Cambridge, MA, 1997), pp. 229–251; http://xxx.lanl.gov/abs/grqc/9507057gr-qc/9507057.Google Scholar
  18. 18.
    18. D. Dürr, S. Goldstein, and N. Zanghi, “Bohmian mechanics and the meaning of the wave function,” in Experimental Metaphysics: Quantum Mechanical Studies in honor of Abner Shimony, R. Cohen, M. Horne, and J. Stachel, eds. (Kluwer Academic, Dordrecht, 1996); hrefhttp://xxx.lanl.gov/abs/quant-ph/9512031quant-ph/9512031.Google Scholar
  19. 19.
    19. R. D. Sorkin, “Impossible measurements on quantum fields,” in Directions in General Relativity: Proceedings of the 1993 International Symposium, Maryland, Vol. 2: Papers in Honor of Dieter Brill, B. Hu and T. Jacobson, eds. (University Press, Cambridge, 1993), pp. 293–305; http://xxx.lanl.gov/abs/grqc/9302018gr-qc/9302018.Google Scholar
  20. 20.
    20. G. Brightwell. private communication, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Fay Dowker
    • 1
  • Isabelle Herbauts
    • 2
  1. 1.Blackett LaboratoryImperial CollegeLondonUK
  2. 2.Department of PhysicsQueen Mary, University of LondonLondonUK

Personalised recommendations