Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

f(R) Gravity in a Kaluza–Klein Theory with Degenerate Metric


f(R) gravity is examined in the context of a five-dimensional Kaluza-Klein theory with degenerate metric. In this theory electromagnetism is described by two vector fields, and there is a reflection symmetry between them which unifies them with gravitation. For matter, it is shown how the Lagrangian may be any function and still generate the same equations of motion, provided that some simple conditions are satisfied. The field equations are derived, and it is found that f(R) gravity is not consistent with the reflection symmetry.

This is a preview of subscription content, log in to check access.


  1. 1.

    Searight, T.P.: On degenerate metrics, dark matter and unification. J. Math. Phys. 58, 122502 (2017)

  2. 2.

    Searight, T.P.: Completing the dark matter solutions in degenerate Kaluza-Klein theory. J. Math. Phys. 60, 042501 (2019)

  3. 3.

    Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)

  4. 4.

    De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relativ. 13, 3 (2010)

  5. 5.

    Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

  6. 6.

    Chiba, T.: 1/R gravity and scalar-tensor gravity. Phys. Lett. B 575, 1–3 (2003)

  7. 7.

    Carroll, S.M., De Felice, A., Duvvuri, V., Easson, D.A., Trodden, M., Turner, M.S.: The cosmology of generalized modified gravity models. Phys. Rev. D 71, 063513 (2005)

  8. 8.

    Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: f(R, T) gravity. Phys. Rev. D 84, 024020 (2011)

  9. 9.

    Amendola, L., Polarski, D., Tsujikawa, S.: Are f(R) models cosmologically viable? Phys. Rev. Lett. 98, 131302 (2007)

  10. 10.

    Olmo, G.J.: Limit to general relativity in f(R) theories of gravity. Phys. Rev. D 75, 023511 (2007)

  11. 11.

    Jana, S., Mohanty, S.: Constraints on f(R) theories of gravity from GW170817. Phys. Rev. D 99, 044056 (2019)

  12. 12.

    Corda, C.: Interferometric detection of gravitational waves: the definitive test for General Relativity. Int. J. Mod. Phys. D 18, 2275–2282 (2009)

  13. 13.

    Berry, C.P.L., Gair, J.R.: Linearized f(R) gravity: gravitational radiation and Solar System tests. Phys. Rev. D 83, 104022 (2011)

  14. 14.

    Habib Mazharimousavi, S., Halilsoy, M., Tahamtan, T.: Solutions for f(R) gravity coupled with electromagnetic field. Eur. Phys. J. C 72, 1851 (2012)

  15. 15.

    Ayón-Beato, E., García, A.: The Bardeen Model as a Nonlinear Magnetic Monopole. Phys. Lett. B 493, 149–152 (2000)

  16. 16.

    Hollenstein, L., Lobo, F.S.N.: Exact solutions of f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 78, 124007 (2008)

  17. 17.

    Rodrigues, M.E., Junior, E.L.B., Marques, G.T., Zanchin, V.T.: Regular black holes in f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 94, 024062 (2016)

  18. 18.

    Kruglov, S.I.: Inflation of universe due to nonlinear electrodynamics. Int. J. Mod. Phys. A 32, 1750071 (2017)

  19. 19.

    Kruglov, S.I.: Nonlinear electrodynamics and magnetic back holes. Ann. Phys. (Berlin) 529, 1700073 (2017)

  20. 20.

    Bronnikov, K.A.: Nonlinear electrodynamics, regular black holes and wormholes. Int. J. Mod. Phys. D 27, 1841005 (2018)

  21. 21.

    Kuang, X.-M., Liu, B., Övgün, A.: Nonlinear electrodynamics AdS black hole and related phenomena in the extended thermodynamics. Eur. Phys. J. C 78, 840 (2018)

Download references

Author information

Correspondence to Trevor P. Searight.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Searight, T.P. f(R) Gravity in a Kaluza–Klein Theory with Degenerate Metric. Found Phys (2020). https://doi.org/10.1007/s10701-020-00329-5

Download citation


  • f(R) gravity
  • Kaluza–Klein theory
  • Degenerate metric
  • Nonlinear electrodynamics