Foundations of Physics

, Volume 49, Issue 12, pp 1372–1393 | Cite as

The Correspondence Principle and the Understanding of Decoherence

  • Sebastian Fortin
  • Olimpia LombardiEmail author


Although Bohr’s Correspondence Principle (CP) played a central role in the first days of quantum mechanics, its original version seems to have no present-day relevance. The purpose of this article is to show that the CP, with no need of being interpreted in terms of the quantum-to-classical limit, still plays a relevant role in the understanding of the relationships between the classical and the quantum domains. In particular, it will be argued that a generic version of the CP is very helpful in elucidating the physical meaning of the phenomenon of quantum decoherence.


Correspondence Principle Quantum decoherence Coarse descriptions Classical limit 



The funding was provided by Agencia Nacional de Promoción Científica y Tecnológica (Grant No. PICT 2018-4519).


  1. 1.
    Bokulich, A.: Bohr’s correspondence principle. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring 2014 Edition) (2014).
  2. 2.
    Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 26, 1–25 (1913)ADSzbMATHGoogle Scholar
  3. 3.
    Bohr, N.: The quantum theory of line-spectra. Det Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser 4, 1–36 (1918)Google Scholar
  4. 4.
    Bohr, N.: On the series spectra of the elements. Lecture before the German Physical Society in Berlin (27 April 1920). Page numbers taken from the translation by A. D. Udden in Bohr (1976), pp. 241–282 (1920)Google Scholar
  5. 5.
    Bohr, N.: Niels Bohr Collected Works, Vol. 3: The Correspondence Principle (1918–1923). In: Nielsen, J.R. (ed.). North-Holland, Amsterdam (1976)Google Scholar
  6. 6.
    Batterman, R.: Chaos, quantization, and the correspondence principle. Synthese 89, 189–227 (1991)MathSciNetGoogle Scholar
  7. 7.
    Bohr, N.: On the application of the quantum theory to atomic structure. In: Proceedings of the Cambridge Philosophical Society (Supplement), pp. 1–42. Cambridge University Press, Cambridge. First published in 2023, Zeitschrift für Physik, 13: 117–165. Reprinted in Bohr (1976), pp. 457–499 (1924)Google Scholar
  8. 8.
    Kramers, H.: Intensities of spectral lines. On the application of the quantum theory to the problem of the relative intensities of the components of the fine structure and of the Stark effect of the lines of the hydrogen spectrum. Det Kongelige Danske Videnskabernes Selskabs Skrifter. Naturvidenskabelig og Mathematisk Afdeling, Copenhagen (1919)Google Scholar
  9. 9.
    Kramers, H.: Das Korrespondenzprinzip und der Schalenbau des Atoms. Die Naturwissenschaften 27, 550–559 (1923)ADSGoogle Scholar
  10. 10.
    van Vleck, J.: The absoption of radiation by multiply periodic orbits and its relation to the correspondence principle and the Rayleigh-Jeans law. Part 1. Some extensions of the correspondence principle. Phys. Rev. 24, 330–346 (1924)ADSGoogle Scholar
  11. 11.
    Sommerfeld, A.: Atomic Structure and Spectral Lines, translated by H. Brose. Methuen, London (original 1919) (1923)Google Scholar
  12. 12.
    Sommerfeld, A.: Grundlagen der Quantentheorie und des Bohrschen Atommodelles. Die Naturwissenschaften 12, 1047–1049 (1924)ADSGoogle Scholar
  13. 13.
    Heilbron, J.: The origins of the exclusion principle. Hist. Stud. Phys. Sci. 13, 261–310 (1983)Google Scholar
  14. 14.
    Pauli, W: Über das Modell des Wasserstoffmolekuelions. Annalen der Physik, 68: 177–240. “Improved and expanded” version of Pauli’s doctoral dissertation under Sommerfeld (1922)Google Scholar
  15. 15.
    Rynasiewicz, R.: The (?) Correspondence principle. In: Aaserud, F. and Kragh, H. (eds.) One hundred years of the Bohr Atom: Proceedings from a Conference. (Scientia Danica: Series M: Mathematica et Physica, 1), pp. 175–199. Royal Danish Academy of Sciences and Letters, Copenhagen (2015)Google Scholar
  16. 16.
    Dirac, P.A.M.: The fundamental equations of quantum mechanics. Proc. R. Soc. Lond. 109, 642–653 (1925)ADSzbMATHGoogle Scholar
  17. 17.
    Born, M.: Moderne Physik. Julius Springer, Berlin. Page numbers taken from the English version of 1957, Atomic Physics, 6th Edition, J. Dougall and R. Blin-Stoyle (trans.). Hafner Publishing Co, New York (1933)Google Scholar
  18. 18.
    Bohm, D.: Quantum Theory. Prentice Hall, New York (1951)Google Scholar
  19. 19.
    Kronz, F.: Nonseparability and quantum chaos. Philos. Sci. 65, 50–75 (1998)MathSciNetGoogle Scholar
  20. 20.
    Belot, G., Earman, J.: Chaos out of order: quantum mechanics, the correspondence principle and chaos. Studies in History and Philosophy of Modern Physics 28, 147–182 (1997)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Ford, J., Mantica, G., Ristow, G.H.: The Arnol’d cat: failure of the correspondence principle. Physica D 50, 493–520 (1991)ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Ford, J., Mantica, G.: Does quantum mechanics obey the correspondence principle? Is it complete? Am. J. Phys. 60, 1086–1098 (1992)ADSMathSciNetGoogle Scholar
  23. 23.
    Schuster, H.G.: Deterministic Chaos. VCH, Weinheim (1984)zbMATHGoogle Scholar
  24. 24.
    Berry, M.V.: Quantum chaology, not quantum chaos. Phys. Scr. 40, 335–336 (1989)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Batterman, R.: Defining chaos. Philosophy of Science 60, 43–66 (1993)MathSciNetGoogle Scholar
  26. 26.
    Smith, P.: Explaining Chaos. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  27. 27.
    Berry, M.V.: Semi-classical mechanics of regular and irregular motion. In: Ioos, G., Helleman, R.G.H., Stora, R. (eds.) Chaotic Behaviour of Deterministic Systems (Les Houches, Session 36), pp. 171–172. North-Holland, Amsterdam (1983)Google Scholar
  28. 28.
    Zeh, H.-D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)ADSGoogle Scholar
  29. 29.
    Zeh, H.-D.: Toward a quantum theory of observation. Found. Phys. 3, 109–116 (1973)ADSGoogle Scholar
  30. 30.
    Zurek, W.: Pointer basis of quantum apparatus: into what mixtures does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)ADSMathSciNetGoogle Scholar
  31. 31.
    Zurek, W.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)ADSMathSciNetGoogle Scholar
  32. 32.
    Zurek, W.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)Google Scholar
  33. 33.
    Zurek, W.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75, 715–776 (2003). Page numbers taken from arXiv:quant-ph/0105127 ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Paz, J. P. and Zurek, W. H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.), Fundamentals of Quantum Information, Lecture Notes in Physics, Vol. 587, pp. 77–148. Springer, Heidelberg-Berlin (2002). Page numbers taken from arXiv:quant-ph/0010011
  35. 35.
    d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Addison-Wesley, Reading (1976)Google Scholar
  36. 36.
    d’Espagnat, B.: Veiled Reality. An Analysis of Present-Day Quantum Mechanical Concepts. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  37. 37.
    Zeh, H.-D.: Roots and fruits of decoherence. Séminaire Poincaré 2, 1–19 (2005)Google Scholar
  38. 38.
    Masillo, F., Scolarici, G., Sozzo, S.: Proper versus improper mixtures: towards a quaternionic quantum mechanics. Theor. Math. Phys. 160, 1006–1013 (2009)zbMATHGoogle Scholar
  39. 39.
    Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  40. 40.
    Frigg, R.: A field guide to recent work on the foundations of thermodynamics and statistical mechanics. In: Rickles, D. (ed.) The Ashgate Companion to the New Philosophy of Physics, pp. 99–196. Ashgate, London (2007)Google Scholar
  41. 41.
    Berkovitz, J., Frigg, R., Kronz, F.: The ergodic hierarchy, randomness and Hamiltonian chaos. Studies in History and Philosophy of Modern Physics 37, 661–691 (2006)ADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Daneri, A., Loinger, A., Prosperi, G.M.: Quantum theory of measurement and ergodicity conditions. Nucl. Phys. 33, 297–319 (1962)MathSciNetzbMATHGoogle Scholar
  43. 43.
    van Hove, L.: The approach to equilibrium in quantum statistics. Physica 23, 441–480 (1957)ADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    van Hove, L.: The ergodic behaviour of quantum many-body systems. Physica 25, 268–276 (1959)ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    van Kampen, N.: Quantum statistics of irreversible processes. Physica 20, 603–622 (1954)ADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    Omnès, R.: Results and problems in decoherence theory. Braz. J. Phys. 35, 207–210 (2005)ADSGoogle Scholar
  47. 47.
    Fortin, S., Lombardi, O.: Understanding decoherence as an irreversible process. Int. J. Quant. Found. 4, 247–267 (2018)Google Scholar
  48. 48.
    Bogoliubov, N.N.: Kinetic equations. J. Exp. Theor. Phys. 16, 691–702 (1946)MathSciNetGoogle Scholar
  49. 49.
    Born, M., Green, H.S.: A general kinetic theory of liquids I. The molecular distribution functions. Proc. R. Soc. A 188, 10–18 (1946)ADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    Kirkwood, J.: The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14, 180–201 (1946)ADSGoogle Scholar
  51. 51.
    Yvon, J.: La Théorie Statistique des Fluides et l’Équation d’État. Hermann, Paris (1935)Google Scholar
  52. 52.
    Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. 18, 315–318 (1931)ADSzbMATHGoogle Scholar
  53. 53.
    Fortin, S., Lombardi, O.: Partial traces in decoherence and in interpretation: what do reduced states refer to? Found. Phys. 44, 426–446 (2014)ADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    Mackey, M.C.: The dynamic origin of increasing entropy. Rev. Mod. Phys. 61, 981–1015 (1989)ADSGoogle Scholar
  55. 55.
    Hartmann, S.: Modeling high-temperature superconductivity: Correspondence at bay? In: Soler, L., Sankey, H., Hoyningen-Huene, P. (eds.) Rethinking Scientific Change and Theory Comparison: Stabilities, Ruptures, Incommensurabilities, pp. 109–129. Springer, Dordrecht (2008)Google Scholar
  56. 56.
    Ballentine, L., Yang, Y., Zibin, J.: Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Phys. Rev. A 50, 2854–2859 (1994)ADSGoogle Scholar
  57. 57.
    Habib, S., Shizume, K., Zurek, W.: Decoherence, chaos, and the correspondence principle. Phys. Rev. Lett. 80, 4361–4365 (1998)ADSMathSciNetzbMATHGoogle Scholar
  58. 58.
    Misra, B., Prigogine, I., Courbage, M.: From deterministic dynamics to probabilistic descriptions. Physica A 98, 1–26 (1979)ADSMathSciNetzbMATHGoogle Scholar
  59. 59.
    Nicolis, G., Prigogine, I.: Exploring Complexity. An Introduction. Freeman & Company, New York (1989)Google Scholar
  60. 60.
    Ardenghi, J.S., Lombardi, O., Narvaja, M.: Modal interpretations and consecutive measurements. In: Karakostas, V., Dieks, D. (eds.) EPSA 2011: Perspectives and Foundational Problems in Philosophy of Science, pp. 207–217. Springer, Dordrecht (2013)Google Scholar
  61. 61.
    Omnès, R.: Decoherence: an irreversible process (2001). arXiv:quant-ph/0106006
  62. 62.
    Omnès, R.: Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities. Phys. Rev. A 65, 052119 (2002)ADSGoogle Scholar
  63. 63.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)Google Scholar
  64. 64.
    Castagnino, M., Fortin, S., Lombardi, O.: Is the decoherence of a system the result of its interaction with the environment? Mod. Phys. Lett. A 25, 1431–1439 (2010)ADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    Fortin, S., Lombardi, O.: A top-down view of the classical limit of quantum mechanics. In: Kastner, R., Jeknić-Dugić, J., Jaroszkiewicz, G. (eds.) Quantum Structural Studies: Classical Emergence from the Quantum Level, pp. 435–468. World Scientific, Singapore (2016)Google Scholar
  66. 66.
    Castagnino, M., Laura, R., Lombardi, O.: A general conceptual framework for decoherence in closed and open systems. Philos. Sci. 74, 968–980 (2007)MathSciNetGoogle Scholar
  67. 67.
    Zurek, W.: Preferred sets of states, predictability, classicality and environment-induced decoherence. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry, pp. 175–207. Cambridge University Press, Cambridge (1994)Google Scholar
  68. 68.
    Bonifacio, R., Olivares, S., Tombesi, P., Vitali, D.: Model-independent approach to nondissipative decoherence. Phys. Rev. A 61, 053802 (2000)ADSGoogle Scholar
  69. 69.
    Ford, G., O’Connell, R.: Decoherence without dissipation. Phys. Lett. A 286, 87–90 (2001)ADSMathSciNetzbMATHGoogle Scholar
  70. 70.
    Frasca, M.: General theorems on decoherence in the thermodynamic limit. Phys. Lett. A 308, 135–139 (2003)ADSMathSciNetzbMATHGoogle Scholar
  71. 71.
    Fortin, S., Lombardi, O., Castagnino, M.: Decoherence: a closed-system approach. Braz. J. Phys. 44, 138–153 (2014)ADSGoogle Scholar
  72. 72.
    Zurek, W.: Decoherence, einselection, and the existential interpretation. Philos. Trans. R. Soc. A 356, 1793–1820 (1998). Page numbers taken from arXiv:quant-ph/0010011
  73. 73.
    Castagnino, M., Fortin, S., Lombardi, O.: Suppression of decoherence in a generalization of the spin-bath model. J. Phys. A Math. Theor. 43, 065304 (2010)ADSMathSciNetzbMATHGoogle Scholar
  74. 74.
    Dugić, M., Jeknić-Dugić, J.: Parallel decoherence in composite quantum systems. Pramana J. Phys. 79, 199–2019 (2012)ADSzbMATHGoogle Scholar
  75. 75.
    Lychkovskiy, O.: Dependence of decoherence-assisted classicality on the way a system is partitioned into subsystems. Phys. Rev. A 87, 022112 (2013)ADSGoogle Scholar
  76. 76.
    Harshman, N.: Symmetry, structure, and emergent subsystems. In: Lombardi, O., Fortin, S., López, C., Holik, F. (eds.) Quantum Worlds. Perspectives on the ontology of quantum mechanics. Cambridge University Press, Cambridge (2019)Google Scholar
  77. 77.
    Harshman, N., Wickramasekara, S.: Galilean and dynamical invariance of entanglement in particle scattering. Phys. Rev. Lett. 98, 080406 (2007)ADSGoogle Scholar
  78. 78.
    Harshman, N., Wickramasekara, S.: Tensor product structures, entanglement, and particle scattering. Open. Syst. Inf. Dyn. 14, 341–351 (2007)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Lombardi, O., Fortin, S., Castagnino, M.: The problem of identifying the system and the environment in the phenomenon of decoherence. In: de Regt, H., Okasha, S., Hartmann, S. (eds.) EPSA Philosophy of Science: Amsterdam 2009, pp. 161–174. Springer, Dordrecht (2012)Google Scholar
  80. 80.
    Jeknić-Dugić, J., Arsenijević, M., Dugić, M.: Quantum Structures: A View of the Quantum World. Lambert Academic Publishing, Saarbrücken (2013)zbMATHGoogle Scholar
  81. 81.
    Zanardi, P.: Virtual quantum subsystems. Phys. Rev. Lett. 87, 077901 (2001)ADSGoogle Scholar
  82. 82.
    Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: Generalizations of entanglement based on coherent states and convex sets. Phys. Rev. A 68, 032308 (2003)ADSMathSciNetGoogle Scholar
  83. 83.
    Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. Phys. Rev. Lett. 92, 107902 (2004)ADSGoogle Scholar
  84. 84.
    Viola, L., Barnum, H.: Entanglement and subsystems, entanglement beyond subsystems, and all that. In: Bokulich, A., Jaeger, G. (eds.) Philosophy of Quantum Information and Entanglement, pp. 16–43. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  85. 85.
    Earman, J.: Some puzzles and unresolved issues about quantum entanglement. Erkenntnis 80, 303–337 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CONICET and University of Buenos AiresBuenos AiresArgentina

Personalised recommendations