Advertisement

The Hole Argument, take n

  • John DoughertyEmail author
Article
  • 63 Downloads
Part of the following topical collections:
  1. Special Issue : Hole Argument

Abstract

I apply homotopy type theory (HoTT) to the hole argument as formulated by Earman and Norton. I argue that HoTT gives a precise sense in which diffeomorphism-related Lorentzian manifolds represent the same spacetime, undermining Earman and Norton’s verificationist dilemma and common formulations of the hole argument. However, adopting this account does not alleviate worries about determinism: general relativity formulated on Lorentzian manifolds is indeterministic using this standard of sameness and the natural formalization of determinism in HoTT. Fixing this indeterminism results in a more faithful mathematical representation of general relativity as used by physicists. It also gives a substantive notion of general covariance.

Keywords

Homotopy type theory General relativity Hole argument General covariance 

Notes

Acknowledgements

An early version of this paper was presented at IPP 2015 and received helpful feedback from the audience. Thanks, too, to Craig Callender, Kathleen Connelly, Nat Jacobs, Chip Sebens, Sebastian Speitel, Anncy Thresher, and Christian Wüthrich for extensive feedback and discussion since then.

References

  1. 1.
    Awodey, S.: Structuralism, invariance, and univalence. Philos. Math. 22(1), 1–11 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Belot, G.: New work for counterpart theorists: determinism. Br. J. Philos. Sci. 46(2), 185–195 (1995)MathSciNetGoogle Scholar
  3. 3.
    Belot, G., Earman, J.: From metaphysics to physics. In: Butterfield, J., Pagonis, C. (eds.) From Physics to Philosophy, chapter 7, pp. 166–186. Cambridge University Press, Cambridge (1999)Google Scholar
  4. 4.
    Belot, G., Earman, J.: Pre-Socratic quantum gravity. In: Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity, chapter 10, pp. 213–255. Cambridge University Press, Cambridge (2001)Google Scholar
  5. 5.
    Brighouse, C.: Spacetime and holes. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, vol. 1994(1), pp. 117–125 (1994)Google Scholar
  6. 6.
    Brighouse, C.: Determinism and modality. Br. J. Philos. Sci. 48(4), 465 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Butterfield, J.: The hole truth. Br. J. Philos. Sci. 40(1), 1–28 (1989)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Corfield, D.: Expressing ‘the structure of’ in homotopy type theory. Synthese.  https://doi.org/10.1007/s11229-018-1724-9 (2017)
  9. 9.
    Dasgupta, S.: The bare necessities. Philos. Perspect. 25, 115–160 (2011)Google Scholar
  10. 10.
    Doboszewski, J.: Non-uniquely extendible maximal globally hyperbolic spacetimes in classical general relativity: a philosophical survey. In: Hofer-Szabó, G., Wroński, L. (eds.) Making it Formally Explicit, pp. 193–212. Springer, New York (2017)Google Scholar
  11. 11.
    Earman, J.: A Primer on Determinism. Springer, New York (1986)Google Scholar
  12. 12.
    Earman, J., Norton, J.D.: What price spacetime substantivalism? The hole story. Br. J. Philos. Sci. 38(4), 515–525 (1987)MathSciNetGoogle Scholar
  13. 13.
    Hoefer, C.: The metaphysics of space-time substantivalism. J. Philos. 93(1), 5–27 (1996)MathSciNetGoogle Scholar
  14. 14.
    Ladyman, J., Presnell, S.: Identity in homotopy type theory, part I: the justification of path induction. Philos. Math. 23(3), 386–406 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ladyman, J., Presnell, S.: Identity in homotopy type theory: part II, the conceptual and philosophical status of identity in HoTT. Philos. Math. 25(2), 210–245 (2017)MathSciNetGoogle Scholar
  16. 16.
    Manchak, J.B.: Is the universe as large as it can be? Erkenntnis 81(6), 1341–1344 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Melia, J.: Holes, haecceitism and two conceptions of determinism. Br. J. Philos. Sci. 50(4), 639 (1999)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Montague, R.: Deterministic theories. In: Thomason, R.H. (ed.) Formal Philosophy, chapter 11, pp. 303–360. Yale University Press, New Haven (1974)Google Scholar
  19. 19.
    Nagel, E.: The causal character of modern physical theory. In: Feigl, H., Brodbeck, M. (eds.) Readings in the Philosophy of Science, pp. 419–438. Appleton-Century-Crofts, New York (1953)Google Scholar
  20. 20.
    Nguyen, J., Teh, N.J., Wells, L.: Why surplus structure is not superfluous. Br. J. Philos. Sci. arXiv:1904.04439. (2018)
  21. 21.
    Pooley, O.: Points, particles, and structural realism. In: Rickles, D., French, S., Saatsi, J. (eds.) The Structural Foundations of Quantum Gravity, chapter 4, pp. 83–120. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  22. 22.
    Ranta, A.: Type-Theoretical Grammar. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
  23. 23.
    Shulman, M.: Homotopy type theory: a synthetic approach to higher equalities. In: Landry, E. (ed.) Categories for the Working Philosopher, pp. 36–57. Oxford University Press, Oxford (2018)Google Scholar
  24. 24.
    Univalent Foundations Program.: Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study (2013). http://homotopytypetheory.org/book
  25. 25.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)zbMATHGoogle Scholar
  26. 26.
    Walsh, P.: Categorical harmony and path induction. Rev Symb. Log. 10(2), 301–321 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Weatherall, J.O.: Regarding the ‘hole argument’. Br. J. Philos. Sci. 69(2), 329–350 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLMU MunichMunichGermany

Personalised recommendations