Foundations of Physics

, Volume 49, Issue 7, pp 700–716 | Cite as

Selective Realism and the Framework/Interaction Distinction: A Taxonomy of Fundamental Physical Theories

  • Federico BenitezEmail author


Following the proposal of a new kind of selective structural realism that uses as a basis the distinction between framework and interaction theories, this work discusses relevant applications in fundamental physics. An ontology for the different entities and properties of well-known theories is thus consistently built. The case of classical field theories—including general relativity as a classical theory of gravitation—is examined in detail, as well as the implications of the classification scheme for issues of realism in quantum mechanics. These applications also shed light on the different range of applicability of the ontic and epistemic versions of structural realism.


Scientific realism Philosophy of modern physics Theory classification 



  1. 1.
    Flores, F.: Einstein’s theory of theories and types of theoretical explanation. Int. Stud. Philos. Sci. 13(2), 123–134 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Einstein, A.: Time, space, and gravitation. Times (London) 13–14 (1919)Google Scholar
  3. 3.
    Suppes, P.: Representation and Invariance of Scientific Structures. CSLI Publications Stanford, Stanford, CA (2002)zbMATHGoogle Scholar
  4. 4.
    Van Fraassen, B.C.: Laws and Symmetry. Oxford University Press, Oxford (1989)CrossRefGoogle Scholar
  5. 5.
    Psillos, S.: Scientific Realism: How Science Tracks Truth. Routledge, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Hempel, C.G.: On the “standard conception” of scientific theories (1970)Google Scholar
  7. 7.
    Cartwright, N.: The Dappled World: A Study of the Boundaries of Science. Cambridge University Press, Cambridge (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    Romero-Maltrana, D., Benitez, F., Soto, C.: A proposal for a coherent ontology of fundamental entities. Found. Sci. 23(4), 705–707 (2018)CrossRefGoogle Scholar
  9. 9.
    Worrall, J.: Structural realism: the best of both worlds?*. Dialectica 43(1–2), 99–124 (1989)CrossRefGoogle Scholar
  10. 10.
    French, S.: The Structure of the World: Metaphysics and Representation. Oxford University Press, Oxford (2014)CrossRefGoogle Scholar
  11. 11.
    Ladyman, J., Ross, D.: Every Thing Must Go: Metaphysics Naturalized. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  12. 12.
    Esfeld, M.: Ontic structural realism and the interpretation of quantum mechanics. Eur. J. Philos. Sci. 3(1), 19–32 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Esfeld, M., Lam, V.: Moderate structural realism about space-time. Synthese 160(1), 27–46 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lazarovici, D.: Against fields. Eur. J. Philos. Sci. 8(2), 145–170 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21(3), 425 (1949)ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Newton, I.: Four Letters from Sir Isaac Newton to Doctor Bentley: Containing Some Arguments in Proof of a Deity. R. and J. Dodsley (1756)Google Scholar
  17. 17.
    Schwarzbach, Y.: The Noether Theorems. Springer, Berlin (2010)Google Scholar
  18. 18.
    Weinberg, S.: The Quantum Theory of Fields, vol. 1. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  19. 19.
    Lange, M.: The most famous equation. J. Philos. 98(5), 219–238 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (2010)zbMATHGoogle Scholar
  21. 21.
    Wheeler, J.A.: Geometrodynamics. Academic Press, New York (1962)zbMATHGoogle Scholar
  22. 22.
    Friedman, M.: Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton University Press, Princeton (2014)Google Scholar
  23. 23.
    Lehmkuhl, D.: Why einstein did not believe that general relativity geometrizes gravity. Stud. Hist. Philos. Sci. Part B 46, 316–326 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Barbour, J.: Shape dynamics. an introduction. In: Finster, F., et al. (eds.) Quantum Field Theory and Gravity, pp. 257–297. Springer, New York (2012)CrossRefGoogle Scholar
  25. 25.
    Gomes, H., Gryb, S., Koslowski, T.: Einstein gravity as a 3d conformally invariant theory. Class. Quantum Gravity 28(4), 045005 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Barbour, J.: Scale-invariant gravity: particle dynamics. Class. Quantum Gravity 20(8), 1543 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Barbour, J.B., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382(1783), 295–306 (1982)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mach, E.: The Science of Mechanics: A Critical and Historical Account of Its Development. Open Court Publishing Company, Chicago (1960)Google Scholar
  29. 29.
    Moretti, V., et al.: Spectral Theory and Quantum Mechanics: Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation. Springer, Berlin (2018)Google Scholar
  30. 30.
    Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information-theoretic constraints. Found. Phys. 33(11), 1561–1591 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics, New edn. Princeton University Press, Princeton (2018)CrossRefGoogle Scholar
  32. 32.
    Penrose, R.: Wavefunction collapse as a real gravitational effect. In: Fokas, B. (ed.) Mathematical Physics, pp. 266–282. World Scientific, Singapore (2000)Google Scholar
  33. 33.
    Gambini, R., García-Pintos, L.P., Pullin, J.: An axiomatic formulation of the montevideo interpretation of quantum mechanics. Stud. Hist. Philos. Sci. Part B 42(4), 256–263 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25(1), 5–38 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Wallace, D.: Lessons from realistic physics for the metaphysics of quantum theory. Synthese 1, 1–16 (2016)Google Scholar
  37. 37.
    Wallace, D.: Quantum Theory as a Framework, and Its Implications for the Quantum Measurement Problem. Scientific Realism and the Quantum. Oxford University Press, Oxford (2018)Google Scholar
  38. 38.
    Norsen, T.: The pilot-wave perspective on spin. Am. J. Phys. 82, 337–348 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    French, S., Redhead, M.: Quantum physics and the identity of indiscernibles. Br. J. Philos. Sci. 39(2), 233–246 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of LausanneLausanneSwitzerland

Personalised recommendations