Advertisement

Foundations of Physics

, Volume 49, Issue 6, pp 460–491 | Cite as

Uncertainty from Heisenberg to Today

  • Reinhard F. WernerEmail author
  • Terry Farrelly
Article
Part of the following topical collections:
  1. Paul Busch: At the Heart of Quantum Mechanics

Abstract

We explore the different meanings of “quantum uncertainty” contained in Heisenberg’s seminal paper from 1927, and also some of the precise definitions that were developed later. We recount the controversy about “Anschaulichkeit”, visualizability of the theory, which Heisenberg claims to resolve. Moreover, we consider Heisenberg’s programme of operational analysis of concepts, in which he sees himself as following Einstein. Heisenberg’s work is marked by the tensions between semiclassical arguments and the emerging modern quantum theory, between intuition and rigour, and between shaky arguments and overarching claims. Nevertheless, the main message can be taken into the new quantum theory, and can be brought into the form of general theorems. They come in two kinds, not distinguished by Heisenberg. These are, on one hand, constraints on preparations, like the usual textbook uncertainty relation, and, on the other, constraints on joint measurability, including trade-offs between accuracy and disturbance.

Keywords

Uncertainty Heisenberg Measurement uncertainty relations Preparation uncertainty relations 

Notes

Acknowledgements

R.F.W. is grateful for the feedback from several audiences, beginning with the Heisenberg Society. Several errors in an earlier arXiv version were spotted by Blake Stacey.

Funding

Funding was provided by Deutsche Forschungsgemeinschaft (Grant No. SFB DQ-mat/A06).

References

Works by Heisenberg

  1. 1.
    Werner Heisenberg: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschr. Phys. 33 (1925) 879–893 English version in [53]Google Scholar
  2. 2.
    Werner Heisenberg: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschr. Phys. 43 (1927) 172–198 English translations in [63] and from NASA https://ntrs.nasa.gov/search.jsp?R=19840008978
  3. 3.
    Werner Heisenberg: The physical principles of quantum theory, U Chicago Press 1930 German version: Die Physikalischen Prinzipien der Quantentheorie, S. Hirzel Verlag, Leipzig 1930 and Bibliogr. Inst. Bd 1Google Scholar
  4. 4.
    Werner Heisenberg: The development of quantum mechanics, Nobel Lecture, December 11, 1933 https://www.nobelprize.org/uploads/2018/06/heisenberg-lecture.pdf
  5. 5.
    Werner Heisenberg: Ordnung der Wirklichkeit. Piper Verlag, Munich 1994Google Scholar
  6. 6.
    Werner Heisenberg: Physics and philosophy. Harper & Row, New York 1958Google Scholar
  7. 7.
    Werner Heisenberg: Der Teil und das Ganze – Gespräche im Umkreis der Atomphysik, Piper Verlag, Munich 1969. English translation: Physics and Beyond – Encounters and conversations, Harper & Row, New York 1971Google Scholar
  8. 8.
    Werner Heisenberg: Die Entwicklung der Deutung der Quantentheorie. Phys. Blätter 12 (1956) 289–304Google Scholar

Other References

  1. 9.
    Appleby, M.: The error principle. Int. J. Theor. Phys. 37, 2557–2572 (1998). arXiv: quant-ph/9803051 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 10.
    Appleby, M.: Quantum errors and disturbances: response to Busch, Lahti and Werner. Entropy 18, 174 (2016). arXiv: 1602.09002 ADSCrossRefGoogle Scholar
  3. 11.
    Beller, M.: Quantum Dialogue. University Chicago Press, Chicago (1999)zbMATHGoogle Scholar
  4. 12.
    Born, M., Heisenberg, W., Jordan, P.: Zur quantenmechanik II. Z. Phys. 35, 557–615 (1925)ADSCrossRefzbMATHGoogle Scholar
  5. 13.
    Born, M., Jordan, P.: Zur quantenmechanik. Z. Phys. 34, 858–888 (1925)ADSCrossRefzbMATHGoogle Scholar
  6. 14.
    Busch, P., Kiukas, J., Werner, R.F.: Sharp uncertainty relations for number and angle. J. Math. Phys. 59, 042102 (2018). arXiv:1604.00566 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 15.
    Busch, P., Lahti, P., Werner, R.F.: Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 111, 160405 (2013). arXiv:1306.1565 ADSCrossRefGoogle Scholar
  8. 16.
    Busch, P., Lahti, P., Werner, R.F.: Measurement uncertainty relations. J. Math. Phys. 55, 04211 (2014). arXiv:1312.4392 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 17.
    Busch, P., Lahti, P., Werner, R.F.: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86, 1261–1281 (2014). arXiv:1312.4393 ADSCrossRefGoogle Scholar
  10. 18.
    Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. Ser. 6, 26 (1913) Part 1: 1–25, Part 2: 476–502, Part 3: 857–875Google Scholar
  11. 19.
    Bohr, N.: His “Como-Lecture” is available in several versions in the collected works. English: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928)ADSCrossRefGoogle Scholar
  12. 20.
    Cassidy, D.: Werner Heisenberg and the uncertainty relation. Online exhibit at AIP. https://history.aip.org/exhibits/heisenberg/
  13. 21.
    Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017). arXiv:1511.04857 ADSMathSciNetCrossRefGoogle Scholar
  14. 22.
    Dammeier, L., Schwonnek, R., Werner, R.F.: Uncertainty relations for angular momentum. New J. Phys. 17, 093046 (2015). arXiv:1505.00049 ADSCrossRefGoogle Scholar
  15. 23.
    Einstein, A.: Letter to Schrödinger, dated 31.5.1928. In [47, 172\(\dagger \)]Google Scholar
  16. 24.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  17. 25.
    Feynman, R.P., Leighton, R.D.: The Feynman Lectures on Physics. Quantum Mechanics, vol. 3. Addison Wesley, Boston (1965)zbMATHGoogle Scholar
  18. 26.
    Galilei, G.: Il saggiatore (“The assayer”), Rome (1623)Google Scholar
  19. 27.
    Hertz, H.: Die Prinzipien der Mechanik in Neuem Zusammenhange Dargestellt. Courier Corporation, Leipzig (1894)zbMATHGoogle Scholar
  20. 28.
    Hilbert, D.: Vorlesung über Quantenmechanik, WS 1926/27. In: T. Sauer and U. Majer (Eds.) with H.-J. Schmidt and A. Schirrmacher: David Hilbert’s Lectures on the Foundations of Physics 1915–1927. Springer, Berlin (2009)Google Scholar
  21. 29.
    Hentschel, K.: Heinrich Hertz’s Mechanics: a model for Werner Heisenberg’s April 1925 paper on the Anomalous Zeeman Effect. In: Baird, D., Hughes, R.I.G., Nordmann, A. (eds.) Heinrich Hertz: Classical Physicist, Modern Philosopher. Kluwer, Dordrecht (1998)Google Scholar
  22. 30.
    Hermann, G.: Die naturphilosophischen grundlagen der quantenmechanik. Naturwissenschaften 42, 718–721 (1935)ADSCrossRefGoogle Scholar
  23. 31.
    Herrmann, A., Meyenn, K.V., Weisskopf, V.F. (eds.): Wolfgang Pauli, Scientific Correspondence with Bohr, Einstein, Heisenberg, a. o. Springer, New York (1979)Google Scholar
  24. 32.
    Hilgevoord, J., Uffink, J.: The Uncertainty Principle. In: E.N. Zalta (ed.): The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2016/entries/qt-uncertainty/
  25. 33.
    Howard, D.: Who invented the Copenhagen interpretation? A study in mythology. Philos. Sci. 71, 669–682 (2004)MathSciNetCrossRefGoogle Scholar
  26. 34.
    Kennard, E.H.: Zur quantenmechanik einfacher bewegungstypen. Z. Phys. 44, 326–352 (1927)ADSCrossRefzbMATHGoogle Scholar
  27. 35.
    Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997). arXiv:quant-ph/9604034 ADSMathSciNetCrossRefGoogle Scholar
  28. 36.
    Kragh, H.: Niels Bohr and the Quantum Atom. Oxford UP, Oxford (2012)CrossRefzbMATHGoogle Scholar
  29. 37.
    Kretschmann, D., Schlingemann, D., Werner, R.F.: The information-disturbance tradeoff and the continuity of Stinespring’s representation. IEEE Trans. Inform. Theory 54, 1708–1717 (2008). arXiv:quant-ph/0605009 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 38.
    Ludwig, G.: Deutung des Begriffs “Physikalische Theorie” und Axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens. Springer Lecture Notes in Physics 4 and Axiomatic Basis of Quantum Mechanics, vol. 2. Springer, New York (1970)zbMATHGoogle Scholar
  31. 39.
    Messiah, A.: Quantum Mechanics, vol. 1. North-Holland, Amsterdam (1961)zbMATHGoogle Scholar
  32. 40.
    Ozawa, M.: Physical content of Heisenberg’s uncertainty relation: limitation and reformulation. Phys. Lett. A 318, 21–29 (2003). arXiv:quant-ph/0210044 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 41.
    Popper, K.: Zur Kritik der Ungenauigkeitsrelationen. Naturwissenschaften 22, 807–808 (1934). With a rejoinder by C. F. V. WeizsäckerGoogle Scholar
  34. 42.
    Popper, K.: Die Logik der Forschung, Springer, Berlin 1934. English edition with comments by the author: The Logic of Scientifc Discovery. Huttchinson & Co., London (1959)Google Scholar
  35. 43.
    Rechenberg, H.: Werner Heisenberg–Die Sprache der Atome. Springer, Berlin (2010)zbMATHGoogle Scholar
  36. 44.
    Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163–164 (1929)ADSCrossRefGoogle Scholar
  37. 45.
    Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012). arXiv:1208.0034 ADSCrossRefGoogle Scholar
  38. 46.
    S. Rozental (Ed.): Niels Bohr: his life and work as seen by his friends and colleagues. North Holland, Amsterdam (1967). As cited in [53]Google Scholar
  39. 47.
    Schrödinger, E.: Über das Verhältnis der Heisenberg–Born–Jordanschen quantenmechanik zu der meinen. Ann. Phys. 79, 734 (1926)CrossRefzbMATHGoogle Scholar
  40. 48.
    Schwonnek, R., Dammeier, L., Werner, R.F.: State-independent uncertainty relations and entanglement detection in noisy systems. Phys. Rev. Lett. 119, 170404 (2017). arXiv:1705.10679 ADSCrossRefGoogle Scholar
  41. 49.
    Schwonnek, R., Reeb, D., Werner, R.F.: Measurement uncertainty for finite quantum observables. Mathematics 4, 8 (2016). arXiv:1604.00382 CrossRefzbMATHGoogle Scholar
  42. 50.
    Schwonnek, R., Reeb, D., Werner, R.F.: Preparation uncertainty is smaller than measurement uncertainty, in preparationGoogle Scholar
  43. 51.
    Stapp, H.P.: The Copenhagen interpretation. Am. J. Phys. 40, 1098–1116 (1972)ADSCrossRefGoogle Scholar
  44. 52.
    Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011). arXiv:1009.2015 ADSCrossRefGoogle Scholar
  45. 53.
    van der Waerden, B.L.: Sources of Quantum Mechanics. Courier Corporation, Dover (1968)Google Scholar
  46. 54.
    Villani, C.: Optimal Transport: Old and New. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  47. 55.
    Meyenn, K.V. (ed.): Eine Entdeckung von ganz außerordentlicher Tragweite; Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon. Springer, Berlin (2011)zbMATHGoogle Scholar
  48. 56.
    von Neumann, J.: Mathematische Begründung der Quantenmechanik, Gött. Nach. 1–57 (1927) The full title of the journal is “Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse”, i.e., the Proceedings of the Göttingen Academy of Sciences. The Academy still exists and the volumes are available http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN252457811_1927&DMDID=DMDLOG_0004. This article is also reprinted as No. 9 in Vol. 1 of A.H. Taub (ed.): John von Neumann, Collected works, Pergamon Press (1961)
  49. 57.
    Werner, R.F.: Unschärfe von Heisenberg bis heute. In: Kleinknecht, K. (ed.) Quanten 5: Jahrbuch der Heisenberg-Gesellschaft. S. Hirzel Verlag, Stuttgart (2017)Google Scholar
  50. 58.
    Werner, R.F.: The uncertainty relation for joint measurement of position and momentum. Quant. Inform. Comput. 4, 546–562 (2004). arXiv:quant-ph/0405184 ADSMathSciNetzbMATHGoogle Scholar
  51. 59.
    Werner, R.F.: The classical limit of quantum theory. arXiv:quant-ph/9504016
  52. 60.
    Werner, R.F.: Uncertainty relations for general phase spaces. Front. Phys. 11, 1–10 (2016). arXiv:1601.03843 CrossRefGoogle Scholar
  53. 61.
    Werner, R.F., Wolff, M.P.H.: Classical mechanics as quantum mechanics with infinitesimal \(\hbar \). Phys. Lett. A 202, 155–159 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 62.
    Weyl, H.: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig (1928)zbMATHGoogle Scholar
  55. 63.
    Wheeler, J.A., Zurek, W. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Quantum Information GroupLeibniz Universität HannoverHannoverGermany

Personalised recommendations