Advertisement

Which Worldlines Represent Possible Particle Histories?

  • Samuel C. FletcherEmail author
Article
  • 88 Downloads
Part of the following topical collections:
  1. Special Issue: Modality in Physics

Abstract

Based on three common interpretive commitments in general relativity, I raise a conceptual problem for the usual identification, in that theory, of timelike curves as those that represent the possible histories of (test) particles in spacetime. This problem affords at least three different solutions, depending on different representational and ontological assumptions one makes about the nature of (test) particles, fields, and their modal structure. While I advocate for a cautious pluralism regarding these options, I also suggest that re-interpreting (test) particles as field processes offers the most promising route for natural integration with the physics of material phenomena, including quantum theory.

Keywords

General relativity Closed timelike curves Particle ontology Field ontology Event ontology Process ontology 

Notes

References

  1. 1.
    Arnol’d, V.I.: Ordinary Differential Equations, 3rd edn. Springer, Berlin (1992). Trans. Roger CookezbMATHGoogle Scholar
  2. 2.
    Auyang, S.Y.: How Is Quantum Field Theory Possible?. Oxford University Press, New York (1995)Google Scholar
  3. 3.
    Auyang, S.Y.: Spacetime as a fundamental and inalienable structure of fields. Stud. Hist. Philos. Mod. Phys. 32(2), 205–215 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baker, D.: Against field interpretations of quantum field theory. Br. J. Philos. Sci. 60(3), 585–609 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Belot, G.: Understanding electromagnetism. Br. J.Philos. Sci. 49(4), 531–555 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Binkoski, J.: Geometry, fields, and spacetime. Br. J. Philo. Sci. (2018).  https://doi.org/10.1093/bjps/axy002
  7. 7.
    Casati, R., Varzi, A.: Events. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, winter 2015 edn. Metaphysics Research Lab, Stanford University, Stanford (2015)Google Scholar
  8. 8.
    Dieks, D.: Space and time in particle and field physics. Stud. Hist. Philos. Mod. Phys. 32(2), 217–241 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dieks, D.: Events and covariance in the interpretation of quantum field theory. In: Kuhlmann, M., Lyre, H., Wayne, A. (eds.) Ontological Aspects of Quantum Field Theory, pp. 215–234. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  10. 10.
    Dixon, W.G.: Dynamics of extended bodies in general relativity. I. momentum and angular momentum. Proc. R. Soc. Lond. A 314(1519), 499–527 (1970)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dorato, M.: Events and the ontology of quantum mechanics. Topoi 34, 369–378 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Earman, J.: Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes. Oxford University Press, Oxford (1995)Google Scholar
  13. 13.
    Einstein, A.: Relativity: The Special and General Theory. Crown Publishers, New York (1961)zbMATHGoogle Scholar
  14. 14.
    Fletcher, S.C.: Indeterminism, gravitation, and spacetime theory. In: Hofer-Szabó, G., Wroński, L. (eds.) Making it Formally Explicit: Probability, Causality and Indeterminism, pp. 179–191. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  15. 15.
    Fletcher, S.C.: On representational capacities, with an application to general relativity. Found. Phys. (2018).  https://doi.org/10.1007/s10701-018-0208-6
  16. 16.
    Forbes, G.: The Metaphysics of Modality. Oxford University Press, Oxford (1985)Google Scholar
  17. 17.
    Forbes, G.: Time, events, and modality. In: Le Poidevin, R. (ed.) The Philosophy of Time, pp. 80–95. Oxford University Press, Oxford (1993)Google Scholar
  18. 18.
    Fraser, D.: The fate of ‘particles’ in quantum field theories with interactions. Stud. Hist. Philos. Mod. Phys. 39(4), 841–859 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gallois, A.: Identity over time. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, winter 2016 edn. Metaphysics Research Lab, Stanford University, Stanford (2016)Google Scholar
  20. 20.
    Geroch, R.: General Relativity from A to B. University of Chicago Press, Chicago (1978)Google Scholar
  21. 21.
    Gilmore, C.: Location and mereology. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall 2018 edn. Metaphysics Research Lab Stanford University, Stanford (2018)Google Scholar
  22. 22.
    Haag, R.: On the sharpness of localization of individual events in space and time. Found. Phys. 43, 1295–1313 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hajicek, P.: Bifurcate space-times. J. Math. Phys. 12(1), 157–160 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  25. 25.
    Hobson, A.: There are no particles, there are only fields. Am. J. Phys. 81(3), 211–223 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Knox, E.: Newtonian spacetime structure in light of the equivalence principle. Br. J. Philos. Sci. 65(4), 863–880 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kuhlmann, M.: The ultimate constituents of the material world. Ontos Verlag, Frankfurt (2010)CrossRefGoogle Scholar
  28. 28.
    Lazarovici, D.: Against fields. Eur. J. Philos. Sci. 8(2), 145–170 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lewis, D.: On the Plurality of Worlds. Basil Blackwell, Oxford (1986)Google Scholar
  30. 30.
    Malament, D.B.: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. University of Chicago Press, Chicago (2012)CrossRefzbMATHGoogle Scholar
  31. 31.
    Mathisson, M.: Neue mechanik materieller systeme. Acta Phys. Pol. 6, 163–209 (1937)zbMATHGoogle Scholar
  32. 32.
    Mayr, D.: A constructive-axiomatic approach to the Lie structure in general spacetime by the principle of approximative reproducibility. Found. Phys. 13(7), 731–743 (1983)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Meyer, U.: The Nature of Time. Clarendon Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  34. 34.
    Norton, J.D.: Approximation and idealization: why the difference matters. Philos. Sci. 79(2), 207–232 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, San Diego (1983)zbMATHGoogle Scholar
  36. 36.
    Papapetrou, A.: Spinning test-particles in general relativity. I. Proc. R. Soc. Lond. A 209(1097), 248–258 (1951)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Romero, G.: On the ontology of spacetime: substantivalism, relationism, eternalism, and emergence. Found. Sci. 22(1), 141–159 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Romero, G.E.: A formal ontological theory based on timeless events. Philosophia 44(2), 607–622 (2016)CrossRefGoogle Scholar
  39. 39.
    Rossanese, E.: Trope ontology and algebraic quantum field theory: an evaluation of Kuhlmann’s proposal. Stud. Hist. Philos. Mod. Phys. 44(4), 417–423 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rovelli, C.: Halfway through the woods: contemporary research on space and time. In: Earman, J., Norton, J.D. (eds.) The Cosmos of Science: Essays of Exploration, pp. 180–223. University of Pittsburgh Press, Pittsburgh (1997)Google Scholar
  41. 41.
    Rovelli, C.: ‘Localization’ in quantum field theory: how much of QFT is compatible with what we know about space-time? In: Cao, T.Y. (ed.) Conceptual Foundations of Quantum Field Theory, pp. 207–232. Cambridge University Press, Cambridge (1999)Google Scholar
  42. 42.
    Russell, B.: The Analysis of Matter. Kegan Paul, Trench, Trubner, London (1927)zbMATHGoogle Scholar
  43. 43.
    Russell, B: Our Knowledge of the External World, 2nd edition. W. W. Norton, New York (1929/1914)Google Scholar
  44. 44.
    Simons, P.: Particulars in particular clothing: three trope theories of substance. Philos. Phenomenol. Res. 54(3), 553–575 (1994)CrossRefGoogle Scholar
  45. 45.
    Teller, P.: Space-time as a physical quantity. In: Kargon, R., Achinstein, P. (eds.) Kelvin’s Baltimore Lectures and Modern Theoretical Physics, pp. 425–448. MIT Press, Cambridge (1987)Google Scholar
  46. 46.
    Weatherall, J.O: Geometry and motion in general relativity. arXiv preprint arXiv:1810.09046 (2018)
  47. 47.
    Westman, H., Sonego, S.: Events and observables in generally invariant spacetime theories. Found. Phys. 38(10), 908–915 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Westman, H., Sonego, S.: Coordinates, observables and symmetry in relativity. Ann. Phys. 324(8), 1585–1611 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Whitehead, A.N.: The Concept of Nature. Cambridge University Press, Cambridge (1920)zbMATHGoogle Scholar
  50. 50.
    Whitehead, A.N.: Process and Reality. In: D.R. Griffin and D.W. Sherburne (eds) corrected edition. Free Press, New York (1978/1929)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Minnesota, Twin CitiesMinneapolisUSA

Personalised recommendations