Quantum Hydrodynamics: Kirchhoff Equations

  • K. V. S. Shiv ChaitanyaEmail author


In this paper, we show that the Kirchhoff equations are derived from the Schrödinger equation by assuming the wave function to be a polynomial like solution. These Kirchhoff equations describe the evolution of n point vortices in hydrodynamics. In two dimensions, Kirchhoff equations are used to demonstrate the solution to single particle Laughlin wave function as complex Hermite polynomials. We also show that the equation for optical vortices, a two dimentional system, is derived from Kirchhoff equation by using paraxial wave approximation. These Kirchhoff equations satisfy a Poisson bracket relationship in phase space which is identical to the Heisenberg uncertainty relationship. Therefore, we conclude that being classical equations, the Kirchhoff equations, describe both a particle and a wave nature of single particle quantum mechanics in two dimensions.


Schrödinger equation Kirchhoff equations n Point vortices Paraxial wave equation 



  1. 1.
    Styer, D.F.: Nine formulations of quantum mechanics. Am. J. Phys. 70, 288 (2002)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Madelung, E.: Quantum theory in hydrodynamical form. Translated by D.H. Delphenich. Z. Phys. 40, 322 (1927)Google Scholar
  4. 4.
    Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48, 065401 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gurkan, Z.N.: Thesis “Integrable Vortex Dynamics and Complex Burgers Equation”, (2005). Accessed 7 March 2019
  6. 6.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85(2), 166 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85(2), 180 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    de Broglie, L.: Non-linear Wave Mechanics: A Causal Interpretation. Elsevier, Amsterdam (1960)zbMATHGoogle Scholar
  9. 9.
    Laughlin, R.B.: Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    Wiegmann, P.: Anomalous hydrodynamics of fractional quantum hall states. J. Exp. Theor. Phys. 117(3), 538 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Wiegmann, P.B.: Hydrodynamics of Euler incompressible fluid and the fractional quantum Hall effect. Phys. Rev. B 88, 241305(R) (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Wiegmann, P., Abanov, A.G.: Anomalous hydrodynamics of two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Abanov, A.G.: On the effective hydrodynamics of the fractional quantum Hall effect. J. Phys. A 46, 292001 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stieltjes, T.J.: Sur quelques theoremes d’algebre. Comptes Rendus de l’Academie des Sciences, Paris, 100, 439–440; Oeuvres Completes, Vol. 1, 440 (1885)Google Scholar
  15. 15.
    Stieltjes, T.J.: Sur quelques theoremes d’algebre, Comptes Rendus de l’Academie des Sciences, Paris, 100, 620–622. Oeuvres Completes 1, 442–444 (1885)Google Scholar
  16. 16.
    Chaitanya, K.V.S.S.: Stieltjes electrostatic model interpretation for bound state problems. Pramana J. Phys. 83(1), 139 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    David, T.: Lecture notes on quantum Hall effect, (2016). Accessed 7 March 2019
  18. 18.
    Haldane, F.D.M.: Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605 (1983)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Ghanmi, A.: A class of generalized complex Hermite polynomials. J. Math. Anal. Appl. 340, 1395 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mehta, M.L.: Random Matrices. Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)zbMATHGoogle Scholar
  21. 21.
    Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45(11), 8185 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    Lax, M., Louisell, W.H., McKnight, W.B.: From Maxwell to paraxial wave optics. Phys. Rev. A 11(4), 1365 (1975)ADSCrossRefGoogle Scholar
  23. 23.
    Padgett, M.: An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes. Am. J. Phys. 64(1), 77 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Bliokh, K., Bliokh, Y., Savelev, S., Nori, F.: Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99(19), 190404 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Bliokh, K.Y., Dennis, M.R., Nori, F.: Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 107(17), 174802 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Bliokh, K.Y., Nori, F.: Spatiotemporal vortex beams and angular momentum. Phys. Rev. A 86(3), 033824 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Schattschneider, P., Verbeeck, J.: Theory of free electron vortices. Ultramicroscopy 111(9–10), 1461 (2011)CrossRefGoogle Scholar
  28. 28.
    Ladavac, K., Grier, D.G.: Colloidal hydrodynamic coupling in concentric optical vortices. Europhys. Lett. 70, 548–554 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Lloyd, S.M., Babiker, M., Thirunavukkarasu, G., Yuan, J.: Electron vortices: beams with orbital angular momentum. Rev. Mod. Phys. 89, 035004 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Clarkson, P.A.: Vortices and polynomials. Stud. Appl. Math. 123, 1–37 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBITS PilaniHyderabadIndia

Personalised recommendations