Advertisement

A Bi-directional Big Bang/Crunch Universe within a Two-State-Vector Quantum Mechanics?

  • Fritz W. Bopp
Article
  • 15 Downloads

Abstract

A two boundary quantum mechanics incorporating a big bang/big crunch universe is carefully considered. After a short motivation of the concept we address the central question how a proposed a-causal quantum universe can be consistent with what is known about macroscopia and how it might find experimental support.

Keywords

Two state vector interpretation of quantum mechanics Resurrection of macroscopic causality Big bang/big crunch universe 

Notes

Acknowledgements

We thank David Craig, Eliahu Cohen, José M. Isidro and Giacomo D’ariano for helpful correspondence.

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48(8), 696 (1935)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bopp, F.: Elementarvorgaenge der quantenmechanik in stochastischer sicht. Ann. Phys. 472(7–8), 407–414 (1966)CrossRefGoogle Scholar
  4. 4.
    Argaman, N.: Bell’s theorem and the causal arrow of time. Am. J. Phys. 78(10), 1007–1013 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    de Beauregard, O.C.: Méchanique quantique. C. R. Acad. Sci. 238 (1953)Google Scholar
  6. 6.
    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58(3), 647 (1986)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Price, H.: Does time-symmetry imply retrocausality? How the quantum world says maybe? Stud. Hist. Philos. Sci. B 43(2), 75–83 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Süssmann, G.: Die spontane lichtemission in der unitären quantenelektrodynamik. Z. Phys. 131(4), 629–662 (1952)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21(3), 425 (1949)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Bopp, F.W.: Time symmetric quantum mechanics and causal classical physics. Found. Phys. 47(4), 490–504 (2017).  https://doi.org/10.1007/s10701-017-0074-7 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hanbury Brown, R., Twiss, R.Q.: Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 300–324. The Royal Society (1957)Google Scholar
  12. 12.
    Metzger, W.J., Novák, T., Csörgő, T., Kittel, W.: Bose–Einstein correlations and the tau-model. arXiv:1105.1660 (2011)
  13. 13.
    Kittel, W., De Wolf, E.A.: Soft Multihadron Dynamics. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  14. 14.
    Bopp, F.W.: Causal classical physics in time symmetric quantum mechanics. In: Proceedings of the 4th International Electronic Conference on Entropy and Its Applications, Basel, Switzerland, 2017.  https://doi.org/10.3390/ecea-4-05010. http://inspirehep.net/record/1653462/files/1802.02090.pdf (2018)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ritz, W.: Über die grundlagen der elektrodynamik un die theorie der schwarzen strahlung. Phys. Z. 9, 903–907 (1908)zbMATHGoogle Scholar
  16. 16.
    Tetrode, H.: Über den wirkungszusammenhang der welt. eine erweiterung der klassischen dynamik. Z. Phys. A 10(1), 317–328 (1922)CrossRefGoogle Scholar
  17. 17.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367 (1948)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17(2–3), 157 (1945)ADSCrossRefGoogle Scholar
  19. 19.
    Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, New York (2013)zbMATHGoogle Scholar
  20. 20.
    Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134(6B), B1410 (1964)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Aharonov, Y., Cohen, E., Shushi, T.: Accommodating Retrocausality with Free Will. arXiv:1512.06689 (2015)
  22. 22.
    Gell-Mann, M., Hartle, J.B.: Time symmetry and asymmetry in quantum mechanics and quantum cosmology. Phys. Orig. Time Asymmetry 1, 311–345 (1994)ADSGoogle Scholar
  23. 23.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1–2), 219–272 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Vaidman, L.: Quantum theory and determinism. Quantum Stud. Math. Found. 1(1–2), 5–38 (2014).  https://doi.org/10.1007/s40509-014-0008-4 zbMATHCrossRefGoogle Scholar
  26. 26.
    Wigner, E.P.: Remarks on the Mind Body Question, in “The Scientist Speculates”. Heinmann, London (1961)Google Scholar
  27. 27.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  28. 28.
    Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10(11), 113019 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Balzer, C., Hannemann, T., Reiß, D., Wunderlich, C., Neuhauser, W., Toschek, P.E.: A relaxationless demonstration of the quantum zeno paradox on an individual atom. Opt. Commun. 211(1), 235–241 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Block, E., Berman, P.R.: Quantum zeno effect and quantum zeno paradox in atomic physics. Phys. Rev. A 44(3), 1466 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Yajnik, U.A.: Cosmology for particle physicists. In: 21st SERC School in Theoretical High Energy Physics Ahmedabad, India, February 11–March 3, 2006. http://inspirehep.net/record/740963/files/arXiv:0808.2236.pdf (2006)
  32. 32.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Alfred A. Knopf Inc., New York (2005)zbMATHGoogle Scholar
  34. 34.
    Gambini, R., Pullin, J.: The montevideo interpretation of quantum mechanics: a short review. Entropy 20, 413 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    Aharonov, Y., Cohen, E., Landsberger, T.: The two-time interpretation and macroscopic time-reversibility. Entropy 19(3), 111 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Morita, K.: Einstein dilemma and two-state vector formalism. J. Quantum Inf. Sci. 5(02), 41 (2015)CrossRefGoogle Scholar
  37. 37.
    Aharonov, Y., Cohen, E., Elitzur, A.C.: Can a future choice affect a past measurement’s outcome? Ann. Phys. 355, 258–268 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    McCauley, J.L.: Chaos, Dynamics, and Fractals: An Algorithmic Approach to Deterministic Chaos. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  39. 39.
    Craig, D.A.: Observation of the final boundary condition: extragalactic background radiation and the time symmetry of the universe. Ann. Phys. 251(2), 384–425 (1996)ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Davies, P.C., Twamley, J.: Time-symmetric cosmology and the opacity of the future light cone. Class. Quantum Gravity 10(5), 931 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    van Tilburg, J.: Measurements of CPT violation at LHCb. In: Proceedings, 7th Meeting on CPT and Lorentz Symmetry (CPT 16): Bloomington, Indiana, USA, June 20–24, 2016, pp. 73–76. https://inspirehep.net/record/1475473/files/arXiv:1607.03620.pdf (2017)
  42. 42.
    Bopp, F.W.: Novel ideas about emergent vacua. Acta Phys. Polon. B 42, 1917 (2011).  https://doi.org/10.5506/APhysPolB.42.1917 CrossRefGoogle Scholar
  43. 43.
    Bopp, F.W.: Novel ideas about emergent vacua and Higgs-like particles. Nucl. Phys. Proc. Suppl. 219–220, 259–262 (2011).  https://doi.org/10.1016/j.nuclphysbps.2011.10.106 ADSCrossRefGoogle Scholar
  44. 44.
    Greenberg, O.W.: CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 89, 231602 (2002).  https://doi.org/10.1103/PhysRevLett.89.231602 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSiegen UniversitySiegenGermany

Personalised recommendations