Advertisement

Foundations of Physics

, Volume 49, Issue 1, pp 24–52 | Cite as

Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms

  • André L. G. MandolesiEmail author
Article

Abstract

Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in Everettian Quantum Mechanics. This invalidates the interpretation of Wallace’s result as meaning it would be rational for Everettian agents to decide using the Born rule.

Keywords

Foundations of quantum mechanics Many worlds interpretation Probability Decision theory 

References

  1. 1.
    Albert, D.: Time and Chance. Harvard University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Albert, D.: Probability in the Everett picture. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 355–368. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  3. 3.
    Albert, D., Loewer, B.: Interpreting the many worlds interpretation. Synthese 77(2), 195–213 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Assis, A.: On the nature of \(a_k *a_k\) and the emergence of the Born rule. Ann. Phys. 523(11), 883–897 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baker, D.: Measurement outcomes and probability in Everettian quantum mechanics. Stud. Hist. Philos. Sci. Part B 38(1), 153–169 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barnum, H., Caves, C., Finkelstein, J., Fuchs, C., Schack, R.: Quantum probability from decision theory? Proc. R. Soc. Lond. 456, 1175–1182 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buniy, R., Hsu, S., Zee, A.: Discreteness and the origin of probability in quantum mechanics. Phys. Lett. B 640(4), 219–223 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carroll, S., Sebens, C.: Many worlds, the Born rule, and self-locating uncertainty. In: Struppa, D., Tollaksen, J. (eds.) Quantum Theory: A Two-Time Success Story: Yakir Aharonov Festschrift, pp. 157–170. Springer, London (2013)Google Scholar
  10. 10.
    Dawid, R., Thébault, K.: Against the empirical viability of the Deutsch–Wallace–Everett approach to quantum mechanics. Stud. Hist. Philos. Sci. Part B 47, 55–61 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deutsch, D.: Quantum theory of probability and decisions. Proc. R. Soc. Lond. 455, 3129–3137 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    DeWitt, B., Graham, N. (eds.): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)Google Scholar
  13. 13.
    Dizadji-Bahmani, F.: The probability problem in Everettian quantum mechanics persists. Br. J. Philos. Sci. 66(2), 257–283 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dizadji-Bahmani, F.: Why i am not an Everettian. In: Karakostas, V., Dieks, D. (eds.) EPSA11 Perspectives and Foundational Problems in Philosophy of Science, pp. 219–228. Springer, Cham (2013)CrossRefGoogle Scholar
  15. 15.
    Dowker, F., Kent, A.: On the consistent histories approach to quantum mechanics. J. Stat. Phys. 82(5), 1575–1646 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Engesser, K., Gabbay, D., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures: Quantum Logic. Handbook of Global Analysis. Elsevier Science, San Diego (2009)zbMATHGoogle Scholar
  17. 17.
    Everett III, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Finkelstein, J.: Has the Born rule been proven? arXiv:0907.2064 (2009)
  19. 19.
    Gell-Mann, M., Hartle, J.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information, pp. 425–458. Addison-Wesley, Reading (1990)Google Scholar
  20. 20.
    Gell-Mann, M., Hartle, J.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Gleason, A.: Measures on the closed subspaces of a hilbert space. J. Math. Mech. 6(6), 885–893 (1957)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Graham, N.: The measurement of relative frequency. In: DeWitt, B., Graham, N. (eds.) The Many Worlds Interpretation of Quantum Mechanics, pp. 229–253. Princeton University Press, Princeton (1973)Google Scholar
  23. 23.
    Griffiths, R.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1), 219–272 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Griffiths, R.: Consistent interpretation of quantum mechanics using quantum trajectories. Phys. Rev. Lett. 70, 2201–2204 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Griffiths, R.: Consistent Quantum Theory. Cambrigde University Press, Cambrigde (2002)zbMATHGoogle Scholar
  26. 26.
    Hanson, R.: When worlds collide: quantum probability from observer selection? Found. Phys. 33(7), 1129–1150 (2003)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hemmo, M., Pitowsky, I.: Quantum probability and many worlds. Stud. Hist. Philos. Mod. Phys. 38(2), 333–350 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jansson, L.: Everettian quantum mechanics and physical probability: against the principle of state supervenience. Stud. Hist. Philos. Sci. Part B 53, 45–53 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Joos, E., Zeh, H., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Karni, E.: Axiomatic foundations of expected utility and subjective probability. In: Machina, M., Viscusi, K. (eds.) Handbook of the Economics of Risk and Uncertainty, vol. 1, pp. 1–39. Amsterdam, Amsterdam (2014)Google Scholar
  31. 31.
    Kent, A.: One world versus many: the inadequacy of everettian accounts of evolution, probability, and scientific confirmation. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 369–390. Oxford University Press, Oxford (2010)Google Scholar
  32. 32.
    Kreps, D.: Notes on the Theory of Choice. Underground Classics in Economics. Westview Press, Boulder (1988)Google Scholar
  33. 33.
    Lewis, P.: Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics. Oxford University Press, Oxford (2016)CrossRefGoogle Scholar
  34. 34.
    Mallah, J.: Decision theory is a red herring for the many worlds interpretation. arXiv:0808.2415 (2008)
  35. 35.
    Mandolesi, A.: Everettian decoherent histories and causal histories. arXiv:1704.01173 (2017)
  36. 36.
    Mandolesi, A.: Analysis of Wallace’s proof of the Born rule in Everettian quantum mechanics: formal aspects. Found. Phys. 48(7), 751–782 (2018).  https://doi.org/10.1007/s10701-018-0179-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Maudlin, T.: Critical study David Wallace, the emergent multiverse: quantum theory according to the Everett interpretation. Oxford University Press, 2012, 530 + xv pp. Noûs 48(4), 794–808 (2014).  https://doi.org/10.1111/nous.12072 CrossRefGoogle Scholar
  38. 38.
    Omnès, R.: Logical reformulation of quantum mechanics. I. Foundations. J. Stat. Phys. 53(3), 893–932 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Omnès, R.: Understanding Quantum Mechanics. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar
  40. 40.
    Parmigiani, G., Inoue, L.Y.T.: Decision Theory: Principles and Approaches. Wiley, Chichester (2009)CrossRefzbMATHGoogle Scholar
  41. 41.
    Polley, L.: Position eigenstates and the statistical axiom of quantum mechanics. Found. Probab. Phys. 1, 314–320 (2001)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Price, H.: Probability in the Everett world: Comments on Wallace and Greaves. arXiv:quant-ph/0604191 (2006)
  43. 43.
    Price, H.: Decisions, decisions, decisions: can savage salvage Everettian probability? In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 369–390. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  44. 44.
    Read, J.: In defence of Everettian decision theory. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. (2018).  https://doi.org/10.1016/j.shpsb.2018.01.005
  45. 45.
    Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.): Many Worlds? Everett, Quantum Theory & Reality. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  46. 46.
    Savage, L.: The Foundations of Statistics, 2nd edn. Dover, New York (1972)zbMATHGoogle Scholar
  47. 47.
    Schlosshauer, M.: Decoherence: and the Quantum-to-Classical Transition. The Frontiers Collection. Springer, New York (2007)Google Scholar
  48. 48.
    Sebens, C., Carroll, S.: Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. Br. J. Philos. Sci. (2016).  https://doi.org/10.1093/bjps/axw004
  49. 49.
    Wallace, D.: Everettian rationality: defending deutsch’s approach to probability in the Everett interpretation. Stud. Hist. Philos. Sci. Part B 34, 415–439 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Wallace, D.: Quantum probability from subjective likelihood: improving on Deutsch’s proof of the probability rule. Stud. Hist. Philos. Sci. Part B 38, 311–332 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Wallace, D.: How to prove the born rule. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 227–263. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  52. 52.
    Wallace, D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)CrossRefzbMATHGoogle Scholar
  53. 53.
    Wilson, A.: Objective probability in Everettian quantum mechanics. Br. J. Philos. Sci. 64(4), 709–737 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Zurek, W.: Decoherence and the transition from quantum to classical—revisited. Los Alamos Sci. 27, 86–109 (2002)Google Scholar
  55. 55.
    Zurek, W.: Probabilities from entanglement, born’s rule \({p}_{k}={\mid {\psi }_{k}\mid }^{2}\) from envariance. Phys. Rev. A 71, 052,105 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations