Foundations of Physics

, Volume 48, Issue 12, pp 1770–1793 | Cite as

Does the PBR Theorem Rule out a Statistical Understanding of QM?

  • Anthony RizziEmail author


The PBR theorem gives insight into how quantum mechanics describes a physical system. This paper explores PBRs’ general result and shows that it does not disallow the ensemble interpretation of quantum mechanics and maintains, as it must, the fundamentally statistical character of quantum mechanics. This is illustrated by drawing an analogy with an ideal gas. An ensemble interpretation of the Schrödinger cat experiment that does not violate the PBR conclusion is also given. The ramifications, limits, and weaknesses of the PBR assumptions, especially in light of lessons learned from Bell’s theorem, are elucidated. It is shown that, if valid, PBRs’ conclusion specifies what type of ensemble interpretations are possible. The PBR conclusion would require a more direct correspondence between the quantum state (e.g., \( \left| {\psi \rangle } \right. \)) and the reality it describes than might otherwise be expected. A simple terminology is introduced to clarify this greater correspondence.


Quantum mechanics Measurement problem PBR theorem Ensemble interpretation Statistics Information 


  1. 1.
    Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42(4), 358–381 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific Publishing, Singapore (1998)CrossRefGoogle Scholar
  3. 3.
    Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 475–478 (2012)CrossRefGoogle Scholar
  4. 4.
    Pusey, M.F., Barrett, J., Rudolph, T.: arXiv:1111.3328 [quant-ph], Nov 14, 2011
  5. 5.
    Rizzi, A.: The Science Before Science, (SBS). IAP Press, Baton Rouge (2004)Google Scholar
  6. 6.
    Rizzi, A.: The Meaning of Bell’s Theorem, arXiv:quant-ph/0310098v1
  7. 7.
    Rizzi, A.: Physics for Realists: Quantum Mechanics. IAP Press, Rochester, NY (2018)Google Scholar
  8. 8.
    Pearle, P.: In: Struppa, Tollaksen (eds.) Collapse Miscellany in Quantum Theory: A Two-Time Success Story, p. 131. Springer, New York, NY (2014)Google Scholar
  9. 9.
    Penrose, : The Road to Reality. Alfred A. Knopf, New York, NY (2004)Google Scholar
  10. 10.
    Valentini, A.: Inflationary Cosmology as a Probe of Primordial Quantum Mechanics, p. 1–44, arXiv:hep-th0805.0163v2. Sep 9, 2010
  11. 11.
    Valentini, A.: Cosmological Data Hint at a Level of Physics Underlying Quantum Mechanics, Scientific American, Nov 2013Google Scholar
  12. 12.
    Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. I. Phys. Lett. A 156(1), 5–11 (1991)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. II. Phys. Lett. A 158, 1–8 (1991)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Colin, S., Valentini, A.: Mechanism for the suppression of quantum noise at large scales on expanding space. Phys. Rev. D 88, 103515 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Harrigan, N., Spekkens Einstein, R.W.: Incompleteness, and the epistemic view of quantum states. Found. Phys. 40, 125 (2010)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lewis, P.G., Jennings, D., Barrett, J., Rudolph, T.: The quantum state can be interpreted statistically. arXiv: 1201.6554v1 [quant-ph], Jan 31, 2012Google Scholar
  17. 17.
    Lewis, P., Jennings, D., Barrett, J., Rudolph, T.: Distinct quantum states can be compatible with a single state of reality. Phys. Rev. Lett. 109, 150404 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Bell, J.S.: On the impossible pilot wave. Found. Phys. 10, 989 (1982)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Hensen, B., et al.: Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature 526, 682–686 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Schlosshauer, M., Fine, A.: No-go theorem for the composition of quantum systems. Phys. Rev. Lett. 112, 070407 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Mansfield, S.: Reality of the quantum state: towards a stronger ψ-ontology theorem. Phys. Rev. A 94, 042124 (2016)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Jaki, S.: Patterns or Principles and Other Essays. Intercollegiate Studies Institute, Delaware (1995)Google Scholar
  23. 23.
    Halataei, S.M.H.: Testing the reality of the quantum state. Nat. Phys. 10, 174 (2014)CrossRefGoogle Scholar
  24. 24.
    Kastner, R.E.: Why quantum theory isn’t a shell game (PBR Theorem for the layperson).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced PhysicsBaton RougeUSA

Personalised recommendations