Foundations of Physics

, Volume 48, Issue 12, pp 1698–1730 | Cite as

An Ontology of Nature with Local Causality, Parallel Lives, and Many Relative Worlds

  • Mordecai WaegellEmail author


Parallel lives (PL) is an ontological model of nature in which quantum mechanics and special relativity are unified in a single universe with a single space-time. Point-like objects called lives are the only fundamental objects in this space-time, and they propagate at or below c, and interact with one another only locally at point-like events in space-time, very much like classical point particles. Lives are not alive in any sense, nor do they possess consciousness or any agency to make decisions—they are simply point objects which encode memory at events in space-time. The only causes and effects in the universe occur when lives meet locally, and thus the causal structure of interaction events in space-time is Lorentz invariant. Each life traces a continuous world-line through space-time, and experiences its own relative world, fully defined by the outcomes of past events along its world-line (never superpositions), which are encoded in its external memory. A quantum field comprises a continuum of lives throughout space-time, and familiar physical systems like particles each comprise a sub-continuum of the lives of the field. Each life carries a hidden internal memory containing a local relative wavefunction, which is a local piece of a pure universal wavefunction, but it is the relative wavefunctions in the local memories throughout space-time which are physically real in PL, and not the universal wavefunction in configuration space. Furthermore, while the universal wavefunction tracks the average behavior of the lives of a system, it fails to track their individual dynamics and trajectories. There is always a preferred separable basis, and for an irreducible physical system, each orthogonal term in this basis is a different relative world—each containing some fraction of the lives of the system. The relative wavefunctions in the lives’ internal memories govern which lives of different systems can meet during future local interactions, and thereby enforce entanglement correlations—including Bell inequality violations. These, and many other details, are explored here, but several aspects of this framework are not yet fleshed out, and work is ongoing.


Interpretations of quantum mechanics Local causality Special relativity Space-time Bell’s theorem Many worlds 



I would like to thank all of the following researchers for humoring me through many discussions as these ideas solidified. In no particular order, they are: Walter Lawrence, David Cyganski, Justin Dressel, Matt Leifer, Kevin Vanslette, Luis Pedro García-Pintos, Kelvin McQueen, Roman Buniy, Paul Raymond-Robichaud, Yakir Aharonov, Jeff Tollaksen, Taylor Lee Patti, Travis Norsen, and Gregg Jaeger. This research was supported (in part) by the Fetzer Franklin Fund of the John E. Fetzer Memorial Trust.


  1. 1.
    Einstein, A.: Relativity: The Special and the General Theory. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
  2. 2.
    Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley, Hoboken (2008)zbMATHGoogle Scholar
  3. 3.
    Brassard, G., Raymond-Robichaud, P.: Can free will emerge from determinism in quantum theory? In: Is Science Compatible with Free Will? pp. 41–61, Springer, New York (2013)Google Scholar
  4. 4.
    Waegell, M.: Locally causal and deterministic interpretations of quantum mechanics: parallel lives and cosmic inflation. Quantum Stud. 4, 323–337 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brassard, G., Raymond-Robichaud, P.: Parallel lives: a local-realistic interpretation of “nonlocal” boxes. arXiv:1709.10016 (2017)
  6. 6.
    Brassard, G., Raymond-Robichaud, P.: The equivalence of local-realistic and no-signalling theories. arXiv:1710.01380 (2017)
  7. 7.
    Zurek, W.H.: Algorithmic information content, church-turing thesis, physical entropy, and Maxwell’s demon. Technical report, Los Alamos National Laboratory, NM (1990)Google Scholar
  8. 8.
    Atmanspacher, H.: Determinism is ontic, determinability is epistemic. In: Between Chance and Choice: Interdisciplinary Perspectives on Determinism, pp. 49–74 (2002)Google Scholar
  9. 9.
    Przibram, K., Schrödinger, E., Einstein, A., Lorentz, H.A., Planck, M.: Letters on Wave Mechanics. Vision Press, London (1967)Google Scholar
  10. 10.
    Norsen, T.: Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quantum Theory. Springer, New York (2017)CrossRefGoogle Scholar
  11. 11.
    Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Many worlds and Schrödinger’s first quantum theory. Br. J. Philos. Sci. 62(1), 1–27 (2011)CrossRefGoogle Scholar
  12. 12.
    Everett III, H.: “relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Everett III, H.: The theory of the universal wave function. In: The Many-Worlds Interpretation of Quantum Mechanics. Citeseer, Princeton (1973)Google Scholar
  14. 14.
    DeWitt, B.S., Graham, N.: The Many Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (2015)CrossRefGoogle Scholar
  15. 15.
    Wallace, D.: Worlds in the Everett interpretation. Stud. Hist. Philos. Sci. B 33(4), 637–661 (2002)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wallace, D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  17. 17.
    Wallace, D.: Decoherence and ontology: or: how I learned to stop worrying and love FAPP. In: Many Worlds, pp. 53–72 (2010)CrossRefGoogle Scholar
  18. 18.
    Wallace, D.: Everett and structure. Stud. Hist. Philos. Sci. B 34(1), 87–105 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Saunders, S.: Many Worlds? Everett, Quantum Theory, & Reality. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  20. 20.
    Vaidman, L.: Many-worlds interpretation of quantum mechanics. (2002)
  21. 21.
    Sebens, C.T., Carroll, S.M.: Self-locating uncertainty and the origin of probability in everettian quantum mechanics. Br. J. Philos. Sci. 69, 25–74 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Deutsch, D., Hayden, P.: Information flow in entangled quantum systems. Proc. R. Soc. Lond. A 456, 1759–1774 (2000)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Timpson, C.G.: Nonlocality and information flow: the approach of Deutsch and Hayden. Found. Phys. 35(2), 313–343 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wallace, D., Timpson, C.G.: Quantum mechanics on spacetime I: spacetime state realism. Br. J. Philos. Sci. 61(4), 697–727 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Brown, H.R., Timpson, C.G.: Bell on bell’s theorem: The changing face of nonlocality. arXiv:1501.03521 (2014)
  26. 26.
    Albert, D., Loewer, B.: Interpreting the many worlds interpretation. Synthese 77(2), 195–213 (1988)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. i. Phys. Rev. 85(2), 166 (1952)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  29. 29.
    Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, vol. 28. Springer, New York (2006)zbMATHGoogle Scholar
  30. 30.
    Hiley, B.J., Dubois, D.M.: Non-commutative geometry, the Bohm interpretation and the mind–matter relationship. AIP Conf. Proc. 573, 77–88 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)Google Scholar
  32. 32.
    Gell-Mann, M., Hartle, J.B.: Decoherent histories quantum mechanics with one real fine-grained history. Phys. Rev. A 85(6), 062120 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Hall, M.J., Deckert, D.-A., Wiseman, H.M.: Quantum phenomena modeled by interactions between many classical worlds. Phys. Rev. X 4(4), 041013 (2014)Google Scholar
  34. 34.
    Madelung, E.: The hydrodynamical picture of quantum theory. Z. Phys. 40, 322–326 (1926)ADSCrossRefGoogle Scholar
  35. 35.
    Trahan, C.J., Wyatt, R.E., Poirier, B.: Multidimensional quantum trajectories: applications of the derivative propagation method. J. Chem. Phys. 122(16), 164104 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Schiff, J., Poirier, B.: Communication: Quantum Mechanics Without Wavefunctions (2012)Google Scholar
  37. 37.
    Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23(7), 987–997 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)ADSCrossRefGoogle Scholar
  39. 39.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447 (1966)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Bell, J.S.: The theory of local beables. In: John S. Bell on the Foundations of Quantum Mechanics, pp. 50–60, World Scientific, Singapore (2001)CrossRefGoogle Scholar
  41. 41.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  42. 42.
    Wigner, E.P.: Remarks on the mind-body question. In: Philosophical Reflections and Syntheses, pp. 247–260, Springer, New York (1995)CrossRefGoogle Scholar
  43. 43.
    Minkowski, H.: Space and Time: Minkowski’s Papers on Relativity. Minkowski Institute Press, Montreal (2013)Google Scholar
  44. 44.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    Robinson, A.: Non-standard Analysis. Princeton University Press, Princeton (2016)Google Scholar
  47. 47.
    Albeverio, S.: Nonstandard Methods in Sochastic Analysis and Mathematical Physics, vol. 122. Academic Press, Cambrigde (1986)Google Scholar
  48. 48.
    Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, New York (2013)zbMATHGoogle Scholar
  49. 49.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Zurek, W.H.: Decoherence and the transition from quantum to classical—revisited. In: Quantum Decoherence, pp. 1–31. Springer, New York (2006)Google Scholar
  52. 52.
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Heisenberg, W.K.: The uncertainty principle. In: The World of the Atom, vol. 1. Edited with commentaries by Henry A. Boorse and Lloyd Motz, with a foreword by II Rabi, p. 1094. Basic Books, New York (1966)Google Scholar
  55. 55.
    Frauchiger, D., Renner, R.: Single-world interpretations of quantum theory cannot be self-consistent. arXiv:1604.07422 (2016)
  56. 56.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988)ADSCrossRefGoogle Scholar
  57. 57.
    Dressel, J.: Weak values as interference phenomena. Phys. Rev. A 91(3), 032116 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    Kim, Y.-H., Yu, R., Kulik, S.P., Shih, Y., Scully, M.O.: Delayed “choice” quantum eraser. Phys/ Rev. Lett. 84(1), 1 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    Scully, M.O., Drühl, K.: Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25(4), 2208 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F., Schouten, R.N., Abellán, C., et al.: Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    Fuchs, C.A., Schack, R.: A quantum-bayesian route to quantum-state space. Found. Phys. 41(3), 345–356 (2011)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Mod. Phys. 85(4), 1693 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to qbism with an application to the locality of quantum mechanics. Am. J. Phys. 82(8), 749–754 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    Harrigan, N., Spekkens, R.W.: Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 40(2), 125–157 (2010)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485 (1959)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Doran, C., Lasenby, A., Gull, S.: Gravity as a gauge theory in the spacetime algebra. In: Clifford Algebras and Their Applications in Mathematical Physics, pp. 375–385. Springer, New York (1993)CrossRefGoogle Scholar
  67. 67.
    Lasenby, A., Doran, C., Gull, S.: Cosmological consequences of a flat-space theory of gravity. In: Clifford Algebras and Their Applications in Mathematical Physics, pp. 387–396. Springer, New York (1993)CrossRefGoogle Scholar
  68. 68.
    Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra. Philos. Trans. R. Soc. Lond. A 356(1737), 487–582 (1998)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Hestenes, D.: Gauge theory gravity with geometric calculus. Found. Phys. 35(6), 903–970 (2005)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Hsu, J.-P.: Yang–Mills gravity in flat space-time I: classical gravity with translation gauge symmetry. Int. J. Mod. Phys. A 21(25), 5119–5139 (2006)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Hestenes, D.: Gauge gravity and electroweak theory. In: The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, pp. 629–647 (2008)Google Scholar
  72. 72.
    Hsu, J.-P.: A unified gravity-electroweak model based on a generalized Yang–Mills framework. Mod. Phys. Lett. A 26(23), 1707–1718 (2011)ADSCrossRefGoogle Scholar
  73. 73.
    Hsu, J.-P.: A model of unified quantum chromodynamics and Yang–Mills gravity. Chin. Phys. C 36(5), 403 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    Hsu, J.-P.: Space-time translational gauge identities in Abelian Yang–Mills gravity. Eur. Phys. J. Plus 3(127), 1–8 (2012)ADSGoogle Scholar
  75. 75.
    Wigner, E.P.: On hidden variables and quantum mechanical probabilities. Am. J. Phys. 38(8), 1005–1009 (1970)ADSCrossRefGoogle Scholar
  76. 76.
    Mermin, N.D.: Is the moon there when nobody looks? Reality and the quantum theory. Phys. Today 38(4), 38–47 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Quantum StudiesChapman UniversityOrangeUSA
  2. 2.Keck Center for Science and TechnologyOrangeUSA

Personalised recommendations