Advertisement

Foundations of Physics

, Volume 48, Issue 12, pp 1669–1697 | Cite as

Epistemic Horizons and the Foundations of Quantum Mechanics

  • Jochen SzangoliesEmail author
Article

Abstract

In-principle restrictions on the amount of information that can be gathered about a system have been proposed as a foundational principle in several recent reconstructions of the formalism of quantum mechanics. However, it seems unclear precisely why one should be thus restricted. We investigate the notion of paradoxical self-reference as a possible origin of such epistemic horizons by means of a fixed-point theorem in Cartesian closed categories due to Lawvere that illuminates and unifies the different perspectives on self-reference.

Keywords

Quantum foundations Diagonal arguments Self-reference 

Notes

Acknowledgements

My first and foremost thanks is due to Dagmar Bruß and Hermann Kampermann, whose guidance and tutelage I had the great privilege to receive, and who have been instrumental in the sharpening of the ideas presented here. Furthermore, I wish to thank Karl Svozil and Noson Yanofsky for invaluable discussion of the material compiled in this article.

References

  1. 1.
    Barrow, J.D., Davies, P.C.W., Harper Jr., C.L.: Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Grinbaum, A.: Elements of information-theoretic derivation of the formalism of quantum theory. Int. J. Quantum Inf. 1(03), 289–300 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Brukner, Č., Zeilinger, A.: Information and fundamental elements of the structure of quantum theory. In: Castell, L., Ischebeck, O. (eds.) Time, Quantum and Information, pp. 323–354. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Fuchs, C. A.: Quantum mechanics as quantum information (and only a little more) (2002). arXiv:quant-ph/0205039
  6. 6.
    Masanes, L., Müller, M.P., Augusiak, R., Pérez-García, D.: Existence of an information unit as a postulate of quantum theory. Proc. Natl. Acad. Sci. 110(41), 16373–16377 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Höhn, P.A., Wever, C.S.P.: Quantum theory from questions. Phys. Rev. A 95(1), 012102 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    von Weizsäcker, C.F., Görnitz, T., Lyre, H.: The Structure of Physics. Springer, Berlin (2006)Google Scholar
  9. 9.
    Spekkens, R.W.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75(3), 032110 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Curtright, T.L., Zachos, C.K.: Quantum mechanics in phase space. Asia Pac. Phys. Newsl. 1(01), 37–46 (2012)CrossRefGoogle Scholar
  11. 11.
    Grinbaum, A.: Information-theoretic princple entails orthomodularity of a lattice. Found. Phys. Lett. 18(6), 563–572 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Chaitin, G.J.: Undecidability and randomness in pure mathematics. In: Cornwell, J. (ed.) Information, Randomness & Incompleteness, pp. 307–313. World Scientific, Singapore (1990)zbMATHCrossRefGoogle Scholar
  14. 14.
    Yurtsever, U.: Quantum mechanics and algorithmic randomness. Complexity 6(1), 27–34 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bendersky, A., Senno, G., de la Torre, G., Figueira, S., Acin, A.: Nonsignaling deterministic models for nonlocal correlations have to be uncomputable. Phys. Rev. Lett. 118(13), 130401 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Calude, C.S., Svozil, K.: Quantum randomness and value indefiniteness. Adv. Sci. Lett. 1(2), 165–168 (2008)CrossRefGoogle Scholar
  17. 17.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1969)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Edis, T.: How Gödel’s theorem supports the possibility of machine intelligence. Minds Mach. 8(2), 251–262 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chaitin, G.J.: A theory of program size formally identical to information theory. J. ACM 22(3), 329–340 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J. Math. 58(345–363), 5 (1936)zbMATHGoogle Scholar
  22. 22.
    Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin \(\Omega \) numbers. In: Annual Symposium on Theoretical Aspects of Computer Science, pp. 596–606. Springer, Berlin (1998)Google Scholar
  23. 23.
    Svozil, K.: Randomness and Undecidability in Physics. World Scientific, Singapore (1993)zbMATHCrossRefGoogle Scholar
  24. 24.
    Svozil, K.: Physical (A)Causality. Fundamental Theories of Physics, vol. 192. Springer, Cham (2018)zbMATHCrossRefGoogle Scholar
  25. 25.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38(1), 173–198 (1931)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To HB Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, London (1980)Google Scholar
  27. 27.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Chaitin, G.J.: Gödel’s theorem and information. Int. J. Theor. Phys. 21(12), 941–954 (1982)zbMATHCrossRefGoogle Scholar
  29. 29.
    Cubitt, T.S., Perez-Garcia, D., Wolf, M.M.: Undecidability of the spectral gap. Nature 528(7581), 207–211 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Berger, R.: The Undecidability of the Domino Problem, vol. 66. American Mathematical Society, Providence (1966)zbMATHGoogle Scholar
  31. 31.
    Lloyd, S.: Quantum-mechanical computers and uncomputability. Phys. Rev. Lett. 71(6), 943 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Lloyd, S.: Necessary and sufficient conditions for quantum computation. J. Mod. Opt. 41(12), 2503–2520 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Eisert, J., Müller, M.P., Gogolin, C.: Quantum measurement occurrence is undecidable. Phys. Rev. Lett. 108(26), 260501 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Popper, K.R.: Indeterminism in quantum physics and in classical physics. Part I. Br. J. Philos. Sci. 1(2), 117–133 (1950)CrossRefGoogle Scholar
  35. 35.
    Rothstein, J.: Thermodynamics and some undecidable physical questions. Philos. Sci. 31(1), 40–48 (1964)CrossRefGoogle Scholar
  36. 36.
    Fuchs, C.A.: On participatory realism. In: Durham, I.T., Rickles, D. (eds.) Information and Interaction, pp. 113–134. Springer, Berlin (2017)CrossRefGoogle Scholar
  37. 37.
    Wheeler, J.: Add “Participant” to “Undecidable Propositions” to arrive at Physics (1974). https://jawarchive.files.wordpress.com/2012/03/twa-1974.pdf
  38. 38.
    Bernstein, J.: Quantum Profiles. Princeton University Press, Princeton (1991)CrossRefGoogle Scholar
  39. 39.
    Chiara, M.L.D.: Logical self reference, set theoretical paradoxes and the measurement problem in quantum mechanics. J. Philos. Logic 6(1), 331–347 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Breuer, T.: The impossibility of accurate state self-measurements. Philos. Sci. 62, 197–214 (1995)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Breuer, T., von Neumann met Kurt Gödel, J.: Undecidable statements in quantum mechanics. In: Chiara, M.L.D., Giuntini, R., Laudisa, F. (eds.) Language. Quantum, Music: Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995, pp. 159–170. Springer, Dordrecht (1999)Google Scholar
  42. 42.
    Aerts, S.: Undecidable classical properties of observers. Int. J. Theor. Phys. 44(12), 2113–2125 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Zwick, M.: Quantum measurement and Gödel’s proof. Specul. Sci. Technol. 1(2), I978 (1978)Google Scholar
  44. 44.
    Peres, A., Zurek, W.H.: Is quantum theory universally valid? Am. J. Phys. 50(9), 807–810 (1982)ADSCrossRefGoogle Scholar
  45. 45.
    Brukner, Č.: Quantum complementarity and logical indeterminacy. Nat. Comput. 8(3), 449–453 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Paterek, T., Kofler, J., Prevedel, R., Klimek, P., Aspelmeyer, M., Zeilinger, A., Brukner, Č.: Logical independence and quantum randomness. New J. Phys. 12(1), 013019 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Calude, C.S., Jürgensen, H.: Is complexity a source of incompleteness? Adv. Appl. Math. 1(35), 1–15 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Calude, C.S., Stay, M.A.: From Heisenberg to Gödel via Chaitin. Int. J. Theor. Phys. 46(8), 2013–2025 (2007)zbMATHCrossRefGoogle Scholar
  49. 49.
    Lawvere, F.W.: Diagonal arguments and Cartesian closed categories. In: Hilton, P.J. (ed.) Category Theory, Homology Theory and Their Applications II, pp. 134–145. Springer, Berlin (1969)CrossRefGoogle Scholar
  50. 50.
    Yanofsky, N.S.: A universal approach to self-referential paradoxes, incompleteness and fixed points. Bull. Symb. Log. 9(03), 362–386 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Cantor, G.: Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen Mathematiker-Vereinigung 1, 75–78 (1892)zbMATHGoogle Scholar
  52. 52.
    Russell, B.: Letter to Frege. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)Google Scholar
  53. 53.
    Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philos. 1, 261–405 (1936)zbMATHGoogle Scholar
  54. 54.
    Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30(3), 222–262 (1908)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Ord, T., Kieu, T.D.: The diagonal method and hypercomputation. Br. J. Philos. Sci. 56(1), 147–156 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    De Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8(5), 225–241 (1927)zbMATHCrossRefGoogle Scholar
  57. 57.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables, i and ii. Phys. Rev. 85(2), 166 (1952)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Valentini, A.: Signal-locality in hidden-variables theories. Phys. Lett. A 297(5–6), 273–278 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Karrass, Abraham: Some remarks on the infinite symmetric groups. Math. Z. 66(1), 64–69 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Richard, J.: Les Principes des Mathématiques et le Problème des Ensembles. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)Google Scholar
  61. 61.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)ADSzbMATHCrossRefGoogle Scholar
  62. 62.
    Svozil, K.: A constructivist manifesto for the physical sciences-constructive re-interpretation of physical undecidability. In: Kohler, E., Stadler, F. (eds.) The Foundational Debate, pp. 65–88. Springer, Dordrecht (1995)zbMATHCrossRefGoogle Scholar
  63. 63.
    Kolmogorov, A.N.: On tables of random numbers. Sankhyā 25, 369–376 (1963)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Levin, L.: On the notion of a random sequence. Sov. Math. Dokl. 14, 1413–1416 (1973)zbMATHGoogle Scholar
  65. 65.
    Schnorr, C.-P.: Process complexity and effective random tests. J. Comput. Syst. Sci. 7(4), 376–388 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Chaitin, G.J.: Information-theoretic incompleteness. Appl. Math. Comput. 52(1), 83–101 (1992)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Shimony, A.: Metaphysical problems in the foundations of quantum mechanics. Int. Philos. Q. 18(1), 3–17 (1978)CrossRefGoogle Scholar
  68. 68.
    Bohr, N.: The causality problem in atomic physics. New Theor. Phys. 147, 11–30 (1939)Google Scholar
  69. 69.
    Svozil, K.: Undecidability everywhere? In: Casti, J.L., Karlqvist, A. (eds.) Boundaries and Barriers: On the Limits to Scientific Knowledge, pp. 215–237. Basic Books, New York (1996)Google Scholar
  70. 70.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics, vol. 2. Princeton University Press, Princeton (1955)zbMATHGoogle Scholar
  71. 71.
    Van den Nest, M., Briegel, H.J.: Measurement-based quantum computation and undecidable logic. Found. Phys. 38(5), 448–457 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Baez, J.C.: Quantum quandaries: a category-theoretic perspective. In: Rickles, R.C., French, S.R., Saatsi, J.T. (eds.) Structural Foundations of Quantum Gravity, pp. 240–267. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  73. 73.
    Baez, J., Stay, M.: Physics, topology, logic and computation: a Rosetta Stone. In: Coecke, R. (ed.) New Structures for Physics, pp. 95–172. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CologneGermany

Personalised recommendations