Advertisement

Foundations of Physics

, Volume 48, Issue 11, pp 1590–1616 | Cite as

Bohmian Trajectories for Kerr–Newman Particles in Complex Space-Time

  • Mark DavidsonEmail author
Article

Abstract

Complexified Liénard–Wiechert potentials simplify the mathematics of Kerr–Newman particles. Here we constrain them by fiat to move along Bohmian trajectories to see if anything interesting occurs, as their equations of motion are not known. A covariant theory due to Stueckelberg is used. This paper deviates from the traditional Bohmian interpretation of quantum mechanics since the electromagnetic interactions of Kerr–Newman particles are dictated by general relativity. A Gaussian wave function is used to produce the Bohmian trajectories, which are found to be multi-valued. A generalized analytic continuation is introduced which leads to an infinite number of trajectories. These include the entire set of Bohmian trajectories. This leads to multiple retarded times which come into play in complex space-time. If one weights these trajectories by their natural Bohmian weighting factors, then it is found that the particles do not radiate, that they are extended, and that they can have a finite electrostatic self energy, thus avoiding the usual divergence of the charged point particle. This effort does not in any way criticize or downplay the traditional Bohmian interpretation which does not assume the standard electromagnetic coupling to charged particles, but it suggests that a hybridization of Kerr–Newman particle theory with Bohmian mechanics might lead to interesting new physics, and maybe even the possibility of emergent quantum mechanics.

Keywords

Quantum gravity Kerr–Newman Bohm Complex space-time Electron model Emergent quantum mechanics 

Notes

Acknowledgements

I would like to thank the two reviewers for this paper who provided valuable insights and suggestions. I would also like to thank Ezra Newman for his helpful correspondence.

References

  1. 1.
    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschritte der Physik 61(9), 781–811 (2013)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Susskind, L.: Dear Qubitzers, \(\text{GR}=\text{ QM }\) (2017). arXiv:1708.03040 [hep-th]
  3. 3.
    Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42(10), 2323–2329 (2010)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cowen, R.: The quantum source of space-time. Nat. News 527(7578), 290 (2015)CrossRefGoogle Scholar
  5. 5.
    Verlinde, E.: Emergent gravity and the dark universe. SciPost Phys. 2(3), 016 (2017). arXiv:1611.02269
  6. 6.
    Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48(1), 73–77 (1935)ADSCrossRefGoogle Scholar
  7. 7.
    Sauer, T.: Einstein’s Unified Field Theory Program. The Cambridge companion to Einstein. Cambridge University Press, New York (2014)CrossRefGoogle Scholar
  8. 8.
    ’t Hooft, G.: The cellular automaton interpretation of quantum mechanics (2014). arXiv:1405.1548 [quant-ph]
  9. 9.
    Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Weinberg, S.: Collapse of the state vector. Phys. Rev. A 85(6), 062116 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage, New York (2007). reprint editionGoogle Scholar
  12. 12.
    Penrose, R.: Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton University Press, Princeton (2016)CrossRefGoogle Scholar
  13. 13.
    Davidson, M.: The Lorentz-Dirac equation in complex space-time. Gen. Relativ. Gravit. 44(11), 2939–2964 (2012). arXiv: 1109.4923 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Davidson, M.: A study of the Lorentz-Dirac equation in complex space-time for clues to emergent quantum mechanics. J. Phys. 361(1), 012005 (2012)Google Scholar
  15. 15.
    Hestenes, D.: The zitterbewegung interpretation of quantum mechanics. Found. Phys. 20(10), 1213–1232 (1990)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Derakhshani, M.: A suggested answer to Wallstrom’s criticism: zitterbewegung stochastic mechanics I (2015). arXiv:1510.06391 [quant-ph]
  17. 17.
    Adamo, T.M., Kozameh, C., Newman, E.T.: Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation. Living Rev. Relativ. 12(6) (2009). www.livingreviews.org/lrr-2009-6
  18. 18.
    Newman, E.T.: Heaven and its properties. General Relativity and Gravitation 7(1), 107–111 (1976)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Newman, E.T.: Complex coordinate transformations and the Schwarzschild-Kerr metrics. J. Math. Phys. 14, 774 (1973)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Burinskii, A.Y.: Microgeon with a Kerr metric. Sov. Phys. J. 17(8), 1068–1071 (1974)CrossRefGoogle Scholar
  21. 21.
    Burinskii, A.: Kerr spinning particle, strings, and superparticle models. Phys. Rev. D 57(4), 2392 (1998)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Burinskii, A.: The Dirac–Kerr electron (2005)Google Scholar
  23. 23.
    Burinskii, A.: The Dirac-Kerr-Newman electron. Gravit. Cosmol. 14, 109–122 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Burinskii, A.: Gravitational strings beyond quantum theory: electron as a closed string (2011). arXiv:1109.3872
  25. 25.
    Burinskii, A.: Regularized Kerr-Newman solution as a gravitating soliton. J. Phys. A 43, 392001 (2010). arXiv:1003.2928 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bacciagaluppi, G., Valentini, A.: Quantum theory at the crossroads: reconsidering the 1927 Solvay conference, 1st edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  27. 27.
    Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory, revised edn. Routledge, London (1995)zbMATHGoogle Scholar
  28. 28.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  29. 29.
    Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, revised edn. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  30. 30.
    Fock, V.: Die Eigenzeit in der klassischen und in der Quantenmechanik. Phys. Z. Sowjetunion 12, 404–425 (1937)zbMATHGoogle Scholar
  31. 31.
    Stueckelberg, E.: La signification du temps propre en mécanique ondulatoire. Helv. Phys. Acta 14, 322–323 (1941)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Horwitz, L.P.: Relat. Quantum Mech. Springer, Dordrecht (2015)Google Scholar
  33. 33.
    Kyprianidis, A.: Particle trajectories in relativistic quantum mechanics. Phys. Lett. A 111, 111–116 (1985)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kyprianidis, A.: Scalar time parametrization of relativistic quantum mechanics: the covariant Schrödinger formalism. Phys. Rep. 155(1), 1–27 (1987)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Fanchi, J.R.: Quantum potential in relativistic dynamics. Found. Phys. 30(8), 1161–1189 (2000)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic? Proc. R. Soc. Lond. A470, 20130699 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Newman, E.T.: Private communication (2017)Google Scholar
  38. 38.
    Burinskii, A.: Gravitating lepton bag model. J. Exp. Theor. Phys. 121(2), 194–205 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Burinskii, A.: Emergence of the Dirac equation in the solitonic source of the Kerr spinning particle. Gravit. Cosmol. 21(1), 28–34 (2015)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Land, M.C.: Pre-Maxwell electrodynamics. Found. Phys. 28(9), 1479–1487 (1998)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Land, M.C., Horwitz, L.P.: Green’s functions for off-shell electromagnetism and spacelike correlations. Found. Phys. 21(3), 299–310 (1991)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Land, M., Horwitz, L.P.: Offshell quantum electrodynamics. J. Phys. 437(1), 012011 (2013)Google Scholar
  43. 43.
    Greenberger, D.M.: Theory of particles with variable mass. I. Formalism. J. Math. Phys. 11(8), 2329–2340 (1970)ADSCrossRefGoogle Scholar
  44. 44.
    Greenberger, D.M.: Theory of particles with variable mass. II. Some physical consequences. J. Math. Phys. 11(8), 2341–2347 (1970)ADSCrossRefGoogle Scholar
  45. 45.
    Greenberger, D.M.: Some useful properties of a theory of variable mass particles. J. Math. Phys. 15(4), 395 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    Greenberger, D.M.: Wavepackets for particles of indefinite mass. J. Math. Phys. 15(4), 406 (1974)ADSCrossRefGoogle Scholar
  47. 47.
    Horwitz, L.: A statistical mechanical model for mass stability in the SHP theory (2016). arXiv:1607.03742 [physics]
  48. 48.
    Land, M.: Speeds of light and mass stability in Stueckelberg–Horwitz–Piron electrodynamics (2016). arXiv:1604.01638 [hep-th, physics:physics]
  49. 49.
    Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89(27), 270401 (2002)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Swanson, M.: Transition elements for a non-Hermitian quadratic Hamiltonian. J. Math. Phys. 45(2), 585–601 (2004)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Poirier, B.: Flux continuity and probability conservation in complexified Bohmian mechanics. Phys. Rev. A 77(2), 022114 (2008)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Chou, C.-C., Wyatt, R.: Complex-extended Bohmian mechanics. J. Chem. Phys. 132(13), 134102 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    Aharonovich, I., Horwitz, L.P.: Radiation-reaction in classical off-shell electrodynamics. I. The above mass-shell case. J. Math. Phys. 53(3), 032902-1–032902-29 (2012)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, 1st edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  55. 55.
    Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6(6), 918 (1965)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Newman, E.T.: Maxwell’s equations and complex Minkowski space. J. Math. Phys. 14(1), 102 (1973)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Burinskii, A.: Kerr geometry as space-time structure of the Dirac electron (2007). arXiv:0712.0577
  58. 58.
    Lynden-Bell, D.: A magic electromagnetic field. Stellar Astrophysical Fluid Dynamics, pp. 369–375. Cambridge University Press, Cambridge (2003)Google Scholar
  59. 59.
    Pekeris, C.L., Frankowski, K.: The electromagnetic field of a Kerr-Newman source. Phys. Rev. A 36(11), 5118 (1987)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  61. 61.
    Davidson, M.P.: Quantum wave equations and non-radiating electromagnetic sources. Ann. Phys. 322(9), 2195–2210 (2007). arXiv:quant-ph/0606245 ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Barut, A.O.: Quantum-electrodynamics based on self-energy. Phys. Scr. 1988(T21), 18 (1988)CrossRefGoogle Scholar
  63. 63.
    Barut, A.O., Dowling, J.P.: Self-field quantum electrodynamics: the two-level atom. Phys. Rev. A 41(5), 2284–2294 (1990)ADSCrossRefGoogle Scholar
  64. 64.
    Barut, A.O., Dowling, J.P.: Interpretation of self-field quantum electrodynamics. Phys. Rev. A 43(7), 4060 (1991)ADSCrossRefGoogle Scholar
  65. 65.
    Barut, A.O., Dowling, J.P.: QED based on self-fields: a relativistic calculation of g-2. Zeitschrift für Naturforschung A 44(11), 1051–1056 (2014)ADSGoogle Scholar
  66. 66.
    Davidson, M.: Predictions of the hydrodynamic interpretation of quantum mechanics compared with quantum electrodynamics for low energy bremsstrahlung. Annales de la Fondation Louis de Broglie 29(4), 661–680 (2004)Google Scholar
  67. 67.
    Burinskii, A., Magli, G.: Kerr-Schild approach to the boosted Kerr solution. Phys. Rev. D 61(4), 044017 (2000)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    Holstein, B.R.: How large is the natural magnetic moment? Am. J. Phys. 74(12), 1104–1111 (2006)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Burinskii, A.: Kerr-Newman electron as spinning soliton. Int. J. Mod. Phys. A 29(26), 1450133 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. 14(15), R415 (2002)Google Scholar
  71. 71.
    Arndt, M., Hornberger, K.: Testing the limits of quantum mechanical superpositions. Nat. Phys. 10(4), 271–277 (2014)CrossRefGoogle Scholar
  72. 72.
    Bialynicki-Birula, I.: On the linearity of the Schrödinger equation. Braz. J. Phys. 35(2A), 211–215 (2005)ADSCrossRefGoogle Scholar
  73. 73.
    Everett, H.: The theory of the universal wave function. In: Dewitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics, pp. 3–140. Princeton University Press, Princeton (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Spectel Research Corp.Palo AltoUSA

Personalised recommendations