Advertisement

Foundations of Physics

, Volume 48, Issue 11, pp 1557–1567 | Cite as

Connecting the Dots: Mott for Emulsions, Collapse Models, Colored Noise, Frame Dependence of Measurements, Evasion of the “Free Will Theorem”

  • Stephen L. AdlerEmail author
Article

Abstract

We review the argument that latent image formation is a measurement in which the state vector collapses, requiring an enhanced noise parameter in objective reduction models. Tentative observation of a residual noise at this level, plus several experimental bounds, imply that the noise must be colored (i.e., non-white), and hence frame dependent and non-relativistic. Thus a relativistic objective reduction model, even if achievable in principle, would be incompatible with experiment; the best one can do is the non-relativistic CSL model. This negative conclusion has a positive aspect, in that the non-relativistic CSL reduction model evades the argument leading to the Conway–Kochen “Free Will Theorem”.

Keywords

Mott Emulsions Collapse models Non-white noise Colored noise Fame dependence Measurements in quantum theory Free Will Theorem 

Notes

Acknowledgements

I wish to thank Angelo Bassi, Jeremy Bernstein, Jerry Finkelstein, Shan Gao, Si Kochen, and Andrea Vinante for stimulating conversations and/or email correspondence about the mysteries of quantum measurement. This work was performed in part at the Aspen Center for Physics, which is supported by the National Science Foundation under Grant No. PHY-1607611.

References

  1. 1.
    Mott, N.F.: The wave mechanics of \(\alpha \)-ray tracks. Proc. R. Soc. A 126, 79 (1929)ADSCrossRefGoogle Scholar
  2. 2.
    Adler, S.L.: Mott Simplified, unpublished notes posted at https://www.sns.ias.edu/sites/default/files/files/mott_simplified(1).pdf
  3. 3.
    Gisin, N., Percival, I.C.: The quantum state diffusion picture of physical processes. J. Phys. A: Math. Gen. 26, 2245 (1993)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Pearle, P.: Collapse models. In: Breuer, H.-P., Petruccione, F. (eds.) Open Systems and Measurements in Relativistic Quantum Field Theory. Lecture Notes in Physics, vol. 526. Springer, Berlin (1999)Google Scholar
  6. 6.
    Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Adler, S.L.: Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J. Phys. A: Math. Theor. 40, 2935 (2007); Erratum-ibid. A 40, 13501 (2007)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Adler, S.L.: Gravitation and the noise needed in objective reduction models. In: Bell, M., Gao, S. (eds.) Quantum Nonlocality and Reality: 50 Years of Bell’s Theorem. Cambridge University Press, Cambridge (2016)Google Scholar
  9. 9.
    Gasbarri, G., Toroš, M., Donadi, S., Bassi, A.: Gravity induced wave function collapse. Phys. Rev. D 96, 104013 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Vinante, A., Mezzena, R., Falferi, P., Carlesso, M., Bassi, A.: Improved noninterferometric test of collapse models using ultracold cantilevers. Phys. Rev. Lett. 119, 110401 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Carlesso, M., Bassi, A., Falferi, P., Vinante, A.: Experimental bounds on collapse models from gravitational wave detectors. Phys. Rev. D 94, 124036 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Helou, B., Slagmolen, B.J.J., McClelland, D.E., Chen, Y.: LISA pathfinder appreciably constrains collapse models. Phys. Rev. D 95, 084054 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Piscicchia, K., Bassi, A., Curceanu, C., Del Grande, R., Donadi, S., Hiesmayr, B.C., Pichler, A.: CSL collapse model mapped with the spontaneous radiation. Entropy 19, 319 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Adler, S.L., Vinante, A.: Bulk heating effects as tests for collapse models. Phys. Rev. A 97, 052119 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Bahrami, M.: Testing collapse models by a thermometer. Phys. Rev. A 97, 052118 (2018), gives an equivalent formula which can be rewritten in the form of Eq. 7Google Scholar
  16. 16.
    Pearle, P.: Relativistic dynamical collapse model. Phys. Rev. A 91, 105012 (2015)Google Scholar
  17. 17.
    Bedingham, D.J.: Collapse models and spacetime symmetries. In: Gao, S. (ed.) Collapse of the Wave Function: Models, Ontology, Origin, and Implications. Cambridge Univesity Press, Cambridge (2018)Google Scholar
  18. 18.
    Toros, M., Bassi, A.: Bounds on collapse models from matter-wave interferometry: calculational details. J. Phys. A: Math. Theor. 51, 115302 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Toros, M., Gasbarri, G., Bassi, A.: Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry. Phys. Lett. A 381, 3921 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Bilardello, M., Donadi, S., Vinante, A., Bassi, A.: Bounds on collapse models from cold-atom experiments. Physica A 462, 764 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Gao, S.: The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics. Cambridge University Press, Cambridge (2017), Sec. 9.3Google Scholar
  22. 22.
    Conway, J., Kochen, S.: The Free Will theorem. Found. Phys. 36, 1441 (2006)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Conway, J.H., Kochen, S.: The strong Free Will theorem. Not. AMS 56, 226 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kochen, S.: Born’s rule, EPR, and the Free Will theorem. arXiv:1710.00868
  25. 25.
    Adler, S.L., Bassi, A.: Collapse models with non-white noises. J. Phys. A: Math. Theor. 40, 15083 (2007)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Adler, S.L., Bassi, A.: Collapse models with non-white noises: II. Particle-density coupled noises. J. Phys. A: Math. Theor. 41, 395308 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Einstein, A., Podolsky, A.B., Rosen, N.: Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations