On Representational Capacities, with an Application to General Relativity

  • Samuel C. FletcherEmail author
Part of the following topical collections:
  1. Special Issue : Hole Argument


Recent work on the hole argument in general relativity by Weatherall (Br J Philos Sci 69(2):329–350, 2018) has drawn attention to the neglected concept of (mathematical) models’ representational capacities. I argue for several theses about the structure of these capacities, including that they should be understood not as many-to-one relations from models to the world, but in general as many-to-many relations constrained by the models’ isomorphisms. I then compare these ideas with a recent argument by Belot (Noûs, 2017. for the claim that some isometries “generate new possibilities” in general relativity. Philosophical orthodoxy, by contrast, denies this. Properly understanding the role of representational capacities, I argue, reveals how Belot’s rejection of orthodoxy does not go far enough, and makes better sense of our practices in theorizing about spacetime.


Representation Abstraction Units Isomorphism General relativity Hole argument Models in science 


  1. 1.
    Arntzenius, F.: Space, Time, and Stuff. Oxford University Press, Oxford (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Awodey, S.: Structure in mathematics and logic: a categorical perspective. Philos. Math. 4, 209–237 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Awodey, S.: Category Theory, 2nd edn. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  4. 4.
    Baker, D.J.: Symmetry and the metaphysics of physics. Philos. Compass 5(12), 1157–1166 (2010)CrossRefGoogle Scholar
  5. 5.
    Baker, D.J.: Broken symmetry and spacetime. Philos. Sci. 78(1), 128–148 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barbour, J.: The End of Time: The Next Revolution in Physics. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  7. 7.
    Belot, G.: Fifty million Elvis fans can’t be wrong. Noûs (2017). Google Scholar
  8. 8.
    Belot, G.: New work for counterpart theorists: Determinism. Br. J. Philos. Sci. 46(2), 185–195 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Belot, G.: Symmetry and equivalence. In: Batterman, R. (ed.) The Oxford Handbook of Philosophy of Physics, pp. 318–339. Oxford University Press, Oxford (2013)Google Scholar
  10. 10.
    Black, M.: The identity of indiscernibles. Mind 61(242), 153–164 (1952)CrossRefGoogle Scholar
  11. 11.
    Boesch, B.: Scientific representation. In: The Internet Encyclopedia of Philosophy. Accessed 29 August 2017 (2017)
  12. 12.
    Brighouse, C.: Spacetime and holes. In: PSA 1994: Proceedings of the Biennial Meeting of the Philosophy of Science Association, vol. 1, pp. 117–125 (1994)Google Scholar
  13. 13.
    Brighouse, C.: Determinism and modality. Br. J. Philos. Sci. 48(4), 465–481 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Brighouse, C.: Understanding indeterminism. In: Dieks, D. (ed.) The Ontology of Spacetime II, pp. 153–173. Elsevier, Oxford (2008)CrossRefGoogle Scholar
  15. 15.
    Butterfield, J.: The hole truth. Br. J. Philos. Sci. 40(1), 1–28 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Christodoulou, D.: Mathematical Problems of General Relativity, vol. 1. European Mathematical Society, Zurich (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dasgupta, S.: Absolutism vs comparativism about quantity. In: Bennett, K., Zimmerman, D.W. (eds.) Oxford Studies in Metaphysics, vol. 8, pp. 105–148. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  18. 18.
    Dees, M.K.: The fundamental structure of the world: Physical magnitudes, space and time, and the laws of nature. Ph.D. thesis, Rutgers University (2015)Google Scholar
  19. 19.
    Dewar, N.: Sophistication about symmetries. Br. J. Philos. Sci. (2017). Google Scholar
  20. 20.
    Dewar, N.: Symmetries in physics, metaphysics, and logic. Ph.D. thesis, Oxford University (2016)Google Scholar
  21. 21.
    Dewar, N.: Symmetries and the philosophy of language. Stud. Hist. Philos. Mod. Phys. 52, 317–327 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Earman, J.: Why space is not a substance (at least not to first degree). Pac. Philos. Q. 67, 225–44 (1986)CrossRefGoogle Scholar
  23. 23.
    Earman, J.: World Enough and Space-Time: Absolute versus Relational Theories of Space and Time. MIT Press, Cambridge (1989)Google Scholar
  24. 24.
    Earman, J., Norton, J.: What price spacetime substantivalism? The hole story. Br. J. Philos. Sci. 38(4), 515–525 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Eddon, M.: Quantitative properties. Philos. Compass 8(7), 633–645 (2013)CrossRefGoogle Scholar
  26. 26.
    Feintzeig, B.: On broken symmetries and classical systems. Stud. Hist. Philos. Mod. Phys. 52, 267–273 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Feintzeig, B.: Unitary inequivalence in classical systems. Synthese 193(9), 2685–2705 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Freire Jr., O.: Quantum Dissidents: Rebuilding the Foundations of Quantum Mechanics (1950–1990). Springer, Berlin (2015)zbMATHGoogle Scholar
  29. 29.
    Frigg, R., Hartmann, S.: Models in science. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2017 edition (2017)Google Scholar
  30. 30.
    Frigg, R., Nguyen, J.: Scientific representation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2016 edition (2016)Google Scholar
  31. 31.
    Iftime, M., Stachel, J.: The hole argument for covariant theories. Gen. Relat. Gravit. 38, 1241–1252 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Jammer, M.: The Philosophy of Quantum Mechanics. Wiley, New York (1974)Google Scholar
  33. 33.
    Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics: A First Introduction to Categories, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Leeds, S.: Holes and determinism: another look. Philos. Sci. 62, 425–437 (1995)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lehmkuhl, D.: Literal versus careful interpretations of scientific theories: the vacuum approach to the problem of motion in general relativity. Philos. Sci. 84(5), 1202–1214 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  37. 37.
    Maddy, P.: Second Philosophy: A Naturalistic Method. Oxford University Press, Oxford (2007)CrossRefzbMATHGoogle Scholar
  38. 38.
    Maudlin, T.: The essence of spacetime. In: Fine, A., Leplin, J. (eds.) PSA 1988: Proceedings of the Biennial Meeting of the Philosophy of Science Association, vol. 2, pp. 82–91 (1989)Google Scholar
  39. 39.
    Maudlin, T.: Substances and spacetimes: what Aristotle would have said to Einstein. Stud. Hist. Philos. Sci. 21(1), 531–61 (1990)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Melia, J.: Holes, haecceitism and two conceptions of determinism. Br. J. Philos. Sci. 50(4), 639–664 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Muller, F.A.: How to defeat Wüthrich’s abysmal embarrassment argument against space-time structuralism. Philos. Sci. 78(5), 1046–1057 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Mundy, B.: Space-time and isomorphism. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, vol. 1, pp. 515–527 (1992)Google Scholar
  43. 43.
    Norton, J.D.: The hole argument. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2015 edition (2015)Google Scholar
  44. 44.
    O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, San Diego (1983)zbMATHGoogle Scholar
  45. 45.
    Pooley, O.: Substantivalist and relationalist approaches to spacetime. In: Batterman, R. (ed.) The Oxford Handbook of Philosophy of Physics. Oxford University Press, Oxford (2013)Google Scholar
  46. 46.
    Rickles, D.: Symmetry, Structure, and Spacetime. Elsevier, Amsterdam (2008)Google Scholar
  47. 47.
    Rosenstock, S., Barrett, T., Weatherall, J.O.: On Einstein algebras and relativistic spacetimes. Stud. Hist. Philos. Mod. Phys. 52, 309–16 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Rovelli, C.: Why gauge? Found. Phys. 44(1), 91–104 (2014)ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    Ruetsche, L.: Interpreting Quantum Theories. Oxford University Press, Oxford (2011)CrossRefzbMATHGoogle Scholar
  50. 50.
    Rynasiewicz, R.: Rings, holes and substantivalism: on the program of Leibniz algebras. Philos. Sci. 59, 572–89 (1992)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Rynasiewicz, R.: Is there a syntactic solution to the hole problem? Philos. Sci. 63, S55–S62 (1996)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Stachel, J.: Einstein’s search for general covariance, 1912–1915. In: Howard, D., Stachel, J. (eds.) Einstein and the History of General Relativity, pp. 1–63. Birkhäuser, Boston (1989)Google Scholar
  53. 53.
    Stachel, J.: The hole argument and some physical and philosophical implications. Living Rev. Relat. 17(1), 1 (2014)ADSCrossRefzbMATHGoogle Scholar
  54. 54.
    Suárez, M.: Scientific representation: against similarity and isomorphism. Int. Stud. Philos. Sci. 17, 225–244 (2003)CrossRefGoogle Scholar
  55. 55.
    Suárez, M.: An inferential conception of scientific representation. Philos. Sci. 71, 767–779 (2004)CrossRefGoogle Scholar
  56. 56.
    Weatherall, J.O.: Regarding the ‘hole argument’. Br. J. Philos. Sci. 69(2), 329–350 (2018)MathSciNetGoogle Scholar
  57. 57.
    Weatherall, J.O.: Fiber bundles, Yang-Mills theory, and general relativity. Synthese 193(8), 2389–2425 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Weatherall, J.O.: Understanding gauge. Philos. Sci. 85(5), 1039–1049 (2016)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Wilson, M.: There’s a hole and a bucket, dear Leibniz. Midwest Stud. Philos. 18(1), 202–241 (1993)CrossRefGoogle Scholar
  60. 60.
    Wüthrich, C.: Challenging the spacetime structuralist. Philos. Sci. 76(5), 1039–1051 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Minnesota, Twin CitiesMinneapolisUSA
  2. 2.Munich Center for Mathematical PhilosophyLudwig Maximilian University of MunichMunichGermany

Personalised recommendations