Advertisement

Foundations of Physics

, Volume 48, Issue 8, pp 982–1006 | Cite as

On Defining the Hamiltonian Beyond Quantum Theory

  • Dominic Branford
  • Oscar C. O. DahlstenEmail author
  • Andrew J. P. Garner
Article
Part of the following topical collections:
  1. Foundational Aspects of Quantum Information

Abstract

Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories—a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.

Keywords

Hamiltonian Generalized probabilistic theories Energy Time evolution 

Notes

Acknowledgements

We thank George Knee and Benjamin Yadin for useful comments. We are grateful for financial support from the UK Engineering and Physical Sciences Research Council, the John Templeton Foundation, the Foundational Questions Institute, EU Collaborative Project TherMiQ (Grant Agreement 618074), the London Institute for Mathematical Sciences and Wolfson College, University of Oxford.

References

  1. 1.
    Hankins, T.L.: Sir William Rowan Hamilton, p. 64. Johns Hopkins University Press, Baltimore (1980)zbMATHGoogle Scholar
  2. 2.
    Coopersmith, J.: Energy, the Subtle Concept: The Discovery of Feynman’s Blocks from Leibniz to Einstein. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  3. 3.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60. Springer, New York (1989)Google Scholar
  4. 4.
    Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Wiley, New York (1977)zbMATHGoogle Scholar
  5. 5.
    Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012
  6. 6.
    Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007).  https://doi.org/10.1103/PhysRevA.75.032304 ADSCrossRefGoogle Scholar
  7. 7.
    Masanes, L., Müller, M.P.: A derivation of quantum theory from physical requirements. New J. Phys. 13(6), 063001 (2011).  https://doi.org/10.1088/1367-2630/13/6/063001 ADSCrossRefGoogle Scholar
  8. 8.
    Janotta, P., Hinrichsen, H.: Generalized probability theories: what determines the structure of quantum theory? J. Phys. A 47(32), 323001 (2014).  https://doi.org/10.1088/1751-8113/47/32/323001 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994).  https://doi.org/10.1007/BF02058098 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hardy, L.: Reformulating and reconstructing quantum theory (2011). arXiv:1104.2066 [gr-qc, physics:hep-th, physics:quant-ph]
  11. 11.
    Dakić, B., Brukner, Č.: Quantum theory and beyond: is entanglement special? In: Hans, H. (ed.) Deep Beauty: Understanding the Quantum World Through Mathematical, pp. 365–392. Cambridge University Press, Cambridge (2011)Google Scholar
  12. 12.
    Chiribella, G.: DAriano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84(1), 012311 (2011).  https://doi.org/10.1103/PhysRevA.84.012311 ADSCrossRefGoogle Scholar
  13. 13.
    Barnum, H., Müller, M.P., Ududec, C.: Higher-order interference and single-system postulates characterizing quantum theory. N. J. Phys. 16(12), 123029 (2014).  https://doi.org/10.1088/1367-2630/16/12/123029 CrossRefGoogle Scholar
  14. 14.
    Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Cloning and broadcasting in generic probabilistic theories (2006). arXiv:quant-ph/0611295
  15. 15.
    Chiribella, G., Scandolo, C.M.: Entanglement as an axiomatic foundation for statistical mechanics (2016). arXiv:1608.04459 [quant-ph]
  16. 16.
    Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95(1), 010503 (2005).  https://doi.org/10.1103/PhysRevLett.95.010503 ADSCrossRefGoogle Scholar
  17. 17.
    Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97(12), 120405 (2006).  https://doi.org/10.1103/PhysRevLett.97.120405 ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007).  https://doi.org/10.1103/PhysRevLett.98.230501 ADSCrossRefGoogle Scholar
  19. 19.
    Short, A.J., Wehner, S.: Entropy in general physical theories. N. J. Phys. 12(3), 033023 (2010).  https://doi.org/10.1088/1367-2630/12/3/033023 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Barnum, H., Barrett, J., Clark, L.O., Leifer, M., Spekkens, R., Stepanik, N., Wilce, A., Wilke, R.: Entropy and information causality in general probabilistic theories. N. J. Phys. 12(3), 033024 (2010).  https://doi.org/10.1088/1367-2630/12/3/033024 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kimura, G., Nuida, K., Imai, H.: Distinguishability measures and entropies for general probabilistic theories. Rep. Math. Phys. 66(2), 175–206 (2010).  https://doi.org/10.1016/S0034-4877(10)00025-X ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Müller, M.P., Dahlsten, O.C.O., Vedral, V.: Unifying typical entanglement and coin tossing: on randomization in probabilistic theories. Commun. Math. Phys. 316(2), 441–487 (2012).  https://doi.org/10.1007/s00220-012-1605-x ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chiribella, G., Scandolo, C.M.: Entanglement and thermodynamics in general probabilistic theories. N. J. Phys. 17(10), 103027 (2015).  https://doi.org/10.1088/1367-2630/17/10/103027 CrossRefGoogle Scholar
  24. 24.
    Barnum, H., Barrett, J., Krumm, M., Müller, M.P.: Entropy, majorization and thermodynamics in general probabilistic theories. Electron. Proc. Theor. Comput. Sci. 195, 43–58 (2015).  https://doi.org/10.4204/EPTCS.195.4 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chiribella, G., Scandolo, C.M.: Operational axioms for diagonalizing states. Electron. Proc. Theor. Comput. Sci. 195, 96–115 (2015).  https://doi.org/10.4204/EPTCS.195.8 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kimura, G., Ishiguro, J., Fukui, M.: Entropies in general probabilistic theories and their application to the Holevo bound. Phys. Rev. A 94(4), 042113 (2016).  https://doi.org/10.1103/PhysRevA.94.042113 ADSCrossRefGoogle Scholar
  27. 27.
    Krumm, M., Barnum, H., Barrett, J., Müller, M.P.: Thermodynamics and the structure of quantum theory. N. J. Phys. 19(4), 043025 (2017).  https://doi.org/10.1088/1367-2630/aa68ef CrossRefGoogle Scholar
  28. 28.
    Chiribella, G., Scandolo, C.M.: Microcanonical thermodynamics in general physical theories. N. J. Phys. 19(12), 123043 (2017).  https://doi.org/10.1088/1367-2630/aa91c7 CrossRefGoogle Scholar
  29. 29.
    Dahlsten, O.C.O., Garner, A.J.P., Thompson, J., Gu, M., Vedral, V.: Particle exchange in post-quantum theories (2013). arXiv:1307.2529 [quant-ph]
  30. 30.
    Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 09(33), 3119–3127 (1994).  https://doi.org/10.1142/S021773239400294X ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ududec, C., Barnum, H., Emerson, J.: Three slit experiments and the structure of quantum theory. Found. Phys. 41(3), 396–405 (2011).  https://doi.org/10.1007/s10701-010-9429-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Garner, A.J.P., Dahlsten, O.C.O., Nakata, Y., Murao, M., Vedral, V.: A framework for phase and interference in generalized probabilistic theories. N. J. Phys. 15(9), 093044 (2013).  https://doi.org/10.1088/1367-2630/15/9/093044 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Dahlsten, O.C.O., Garner, A.J.P., Vedral, V.: The uncertainty principle enables non-classical dynamics in an interferometer. Nat. Commun. 5, 4592 (2014).  https://doi.org/10.1038/ncomms5592 ADSCrossRefGoogle Scholar
  34. 34.
    Garner, A.J.P., Müller, M.P., Dahlsten, O.C.O.: The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer. Proc. R. Soc. A 473, 20170596 (2017).  https://doi.org/10.1098/rspa.2017.0596 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Lee, C.M., Selby, J.H.: Higher-order interference in extensions of quantum theory. Found. Phys. 47(1), 89–112 (2017).  https://doi.org/10.1007/s10701-016-0045-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Barnum, H., Lee, C.M., Scandolo, C.M., Selby, J.H.: Ruling out higher-order interference from purity principles. Entropy 19(6), 253 (2017).  https://doi.org/10.3390/e19060253 ADSCrossRefGoogle Scholar
  37. 37.
    Lin, Y.L., Dahlsten, O.C.O.: Tunnelling necessitates negative Wigner function. arXiv:1607.01764 [quant-ph] (2016)
  38. 38.
    Lee, C.M., Barrett, J.: Computation in generalised probabilisitic theories. N. J. Phys. 17(8), 083001 (2015).  https://doi.org/10.1088/1367-2630/17/8/083001 CrossRefGoogle Scholar
  39. 39.
    Lee, C.M., Selby, J.H.: Generalised phase kick-back: the structure of computational algorithms from physical principles. N. J. Phys. 18(3), 033023 (2016).  https://doi.org/10.1088/1367-2630/18/3/033023 CrossRefGoogle Scholar
  40. 40.
    Lee, C.M., Hoban, M.J.: Bounds on the power of proofs and advice in general physical theories. Proc. R. Soc. A 472(2190), 20160076 (2016).  https://doi.org/10.1098/rspa.2016.0076 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lee, C.M., Selby, J.H.: Deriving Grover’s lower bound from simple physical principles. N. J. Phys. 18(9), 093047 (2016).  https://doi.org/10.1088/1367-2630/18/9/093047 CrossRefGoogle Scholar
  42. 42.
    Barrett, J., de Beaudrap, N., Hoban, M.J., Lee, C.M.: The computational landscape of general physical theories (2017). arXiv:1702.08483 [quant-ph]
  43. 43.
    Lee, C.M., Selby, J.H., Barnum, H..: Oracles and query lower bounds in generalised probabilistic theories (2017). arXiv:1704.05043 [quant-ph]
  44. 44.
    Garner, A.J.P.: Interferometric computation beyond quantum theory. Found. Phys. (2018).  https://doi.org/10.1007/s10701-018-0142-7 Google Scholar
  45. 45.
    Robertson, H.P.: The uncertainty principle. Phys. Rev. 34(1), 163–164 (1929).  https://doi.org/10.1103/PhysRev.34.163 ADSCrossRefGoogle Scholar
  46. 46.
    Schrödinger, E.: Zum Heisenbergschen Unschrfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14, 296–303 (1930)zbMATHGoogle Scholar
  47. 47.
    Hioe, F.T., Eberly, J.H.: $N$-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47(12), 838–841 (1981).  https://doi.org/10.1103/PhysRevLett.47.838 ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Kimura, G.: The bloch vector for N-level systems. J. Phys. Soc. Jpn. 72(Suppl.C):185–188 (2003).  https://doi.org/10.1143/JPSJS.72SC.185
  49. 49.
    Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  50. 50.
    Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A 41(23), 235303 (2008).  https://doi.org/10.1088/1751-8113/41/23/235303 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Jakóbczyk, L., Siennicki, M.: Geometry of Bloch vectors in two-qubit system. Phys. Lett. A 286(6), 383–390 (2001).  https://doi.org/10.1016/S0375-9601(01)00455-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81(6), 062348 (2010).  https://doi.org/10.1103/PhysRevA.81.062348 ADSCrossRefGoogle Scholar
  53. 53.
    Janotta, P., Lal, R.: Generalized probabilistic theories without the no-restriction hypothesis. Phys. Rev. A 87(5), 052131 (2013).  https://doi.org/10.1103/PhysRevA.87.052131 ADSCrossRefGoogle Scholar
  54. 54.
    Garner, A.J.P.: Phase and interference phenomena in generalised probabilistic theories. DPhil thesis, University of Oxford (2015)Google Scholar
  55. 55.
    Spekkens, R.W.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75(3), 032110 (2007).  https://doi.org/10.1103/PhysRevA.75.032110 ADSCrossRefGoogle Scholar
  56. 56.
    Wilce, A.: A royal road to quantum theory (or thereabouts) (2016). http://arxiv.org/abs/1606.09306
  57. 57.
    Simon, B.: Representations of Finite and Compact Groups. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  58. 58.
    Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996).  https://doi.org/10.1103/PhysRevA.54.1862 ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    van Enk, S.J.: A toy model for quantum mechanics. Found. Phys. 37(10), 1447–1460 (2007).  https://doi.org/10.1007/s10701-007-9171-3 ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Pusey, M.F.: Stabilizer notation for Spekkens’s Toy theory. Found. Phys. 42(5), 688–708 (2012).  https://doi.org/10.1007/s10701-012-9639-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Tuckerman, M.: Operators and numerical propagation methods (2002). URL http://www.nyu.edu/classes/tuckerman/mol.dyn/lectures/lecture_9/node1.html
  62. 62.
    Graydon, M.A.: Quaternions and quantum theory. PhD thesis, University of Waterloo (2011). URL http://hdl.handle.net/10012/6168
  63. 63.
    Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamicsa topical review. J. Phys. A 49(14), 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Skrzypczyk, P., Short, A.J., Popescu, S.: Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).  https://doi.org/10.1038/ncomms5185 ADSCrossRefGoogle Scholar
  65. 65.
    Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WarwickCoventryUK
  2. 2.Atomic and Laser Physics, Clarendon LaboratoryUniversity of OxfordOxfordUK
  3. 3.Southern University of Science and Technology (SUSTech)ShenzhenChina
  4. 4.London Institute for Mathematical SciencesLondonUK
  5. 5.Institute for Quantum Optics and Quantum Information, Austrian Academy of SciencesViennaAustria
  6. 6.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore

Personalised recommendations