Foundations of Physics

, Volume 48, Issue 10, pp 1446–1485 | Cite as

Cosmological Constraints from Low-Redshift Data

  • Vladimir V. Luković
  • Balakrishna S. Haridasu
  • Nicola Vittorio
Part of the following topical collections:
  1. Black holes, Gravitational waves and Space Time Singularities


In this paper we summarise the constraints that low-redshift data—such as supernovae Ia (SN Ia), baryon acoustic oscillations (BAO) and cosmic chronometers (CC)—are able to set on the concordance model and its extensions, as well as on inhomogeneous but isotropic models. We provide a broad overlook into these cosmological scenarios and several aspects of data analysis. In particular, we review a number of systematic issues of SN Ia analysis that include magnitude correction techniques, selection bias and their influence on the inferred cosmological constraints. Furthermore, we examine the isotropic and anisotropic components of the BAO data and their individual relevance for cosmological model-fitting. We extend the discussion presented in earlier works regarding the inferred dynamics of cosmic expansion and its present rate from the low-redshift data. Specifically, we discuss the cosmological constraints on the accelerated expansion and related model-selections. In addition, we extensively talk about the Hubble constant problem, then focus on the low-redshift data constraint on \(H_0\) that is based on CC. Finally, we present the way in which this result compares to the high-redshift \(H_0\) estimate and local (redshift zero) measurements that are in tension.


Cosmology: cosmological parameters Dark energy Hubble constant 



We acknowledge financial support by ASI Grant No. 2016-24-H.0. We thank Giuseppe Bono for his constructive comments and helpful suggestions.


  1. 1.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85 (2017a)ADSCrossRefGoogle Scholar
  2. 2.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017b)ADSCrossRefGoogle Scholar
  3. 3.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017c)ADSCrossRefGoogle Scholar
  4. 4.
    Addison, G.E., Watts, D.J., Bennett, C.L., et al.: Elucidating \(\varLambda \)CDM: impact of baryon acoustic oscillation measurements on the hubble constant discrepancy. (2017). arXiv:1707.06547
  5. 5.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716 (1974)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Alam, S., Ata, M., Bailey, S., et al.: The clustering of galaxies in the completed SDSS-III Baryon oscillation spectroscopic survey: cosmological analysis of the DR12 galaxy sample. MNRAS 470, 2617 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Alam, U., Sahni, V., Deep Saini, T., Starobinsky, A.A.: Exploring the expanding Universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 344, 1057 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Alcock, C., Paczyński, B.: An evolution free test for non-zero cosmological constant. Nature 281, 358 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    Alnes, H., Amarzguioui, M.: CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe. Phys. Rev. D 74, 103520 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Alnes, H., Amarzguioui, M., Grøn, Ø.: Inhomogeneous alternative to dark energy? Phys. Rev. D 73, 083519 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Alonso, D., García-Bellido, J., Haugbølle, T., Vicente, J.: Large scale structure simulations of inhomogeneous Lemaître-Tolman-Bondi void models. Phys. Rev. D 82, 123530 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Amati, L., Frontera, F., Guidorzi, C.: Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations. Astron. Astrophys. 508, 173 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Amati, L., Frontera, F., Tavani, M., et al.: Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Amati, L., Guidorzi, C., Frontera, F., et al.: Measuring the cosmological parameters with the Ep, i-Eiso correlation of Gamma-Ray bursts. MNRAS 391, 577 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Amendola, L.: Coupled quintessence. Phys. Rev. D 62, 043511 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Amendola, L., Eggers Bjæ lde, O., Valkenburg, W., Wong, Y.Y.Y.: How real-time cosmology can distinguish between different anisotropic models. J. Cosmol. Astropart. Phys. 12, 042 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Anderson, R.I., Riess, A.G.: On Cepheid distance scale bias due to stellar companions and cluster populations. (2017). arXiv:1712.01065
  18. 18.
    Andres Vallejo, S., Enea Romano, A.: Reconstructing the metric of the local universe from number counts observations. J. Cosmol. Astropart. Phys. 10, 023 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Essentials of k-essence. Phys. Rev. D 63, 103510 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Ata, M., Baumgarten, F., Bautista, J., et al.: The clustering of the SDSS-IV extended baryon oscillation spectroscopic survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. MNRAS 473, 4773 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Aubourg, É., Bailey, S., Bautista, J.E., et al.: Cosmological implications of baryon acoustic oscillation measurements. Phys. Rev. D 92, 123516 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Bagla, J.S., Jassal, H.K., Padmanabhan, T.: Cosmology with tachyon field as dark energy. Phys. Rev. D 67, 063504 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Bahamonde, S., Boehmer, C.G., Carloni, S., et al.: Dynamical systems applied to cosmology: dark energy and modified gravity. (2017) arXiv:1712.03107
  25. 25.
    Bahcall, N.A., Cen, R.: Galaxy clusters and cold dark matter—a low-density unbiased universe? Astrophys. J. 398, L81 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    Bardeen, J.M., Bond, J.R., Efstathiou, G.: Cosmic fluctuation spectra with large-scale power. Astrophys. J. 321, 28 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    Bautista, J.E., Busca, N.G., Guy, J., et al.: Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Ly\(\alpha \)-forests. Astron. Astrophys. 603, A12 (2017)CrossRefGoogle Scholar
  28. 28.
    Beaton, R.L., Freedman, W.L., Madore, B.F., et al.: The Carnegie-Chicago hubble program. I. An independent approach to the extragalactic distance scale using only population II distance indicators. Astron. Astrophys. 832, 210 (2016)Google Scholar
  29. 29.
    Bernal, J.L., Verde, L., Riess, A.G.: The trouble with H\(_{0}\). J. Cosmol. Astropart. Phys. 10, 019 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Bessel, F.W.: Über Veränderlichkeit der eigenen Bewegungen der Fixterne Von Herrn Geh-Rath Bessel. Astron. Nachr. 22, 145 (1844)ADSCrossRefGoogle Scholar
  31. 31.
    Betoule, M., Kessler, R., Guy, J., et al.: Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014)CrossRefGoogle Scholar
  32. 32.
    Bilicki, M., Seikel, M.: We do not live in the R\(_{h}\) = ct universe. MNRAS 425, 1664 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Blondin, S., Mandel, K.S., Kirshner, R.P.: Do spectra improve distance measurements of Type Ia supernovae? Astron. Astrophys. 526, A81 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Böhringer, H., Chon, G., Bristow, M., Collins, C .A.: The extended ROSAT-ESO flux-limited X-ray galaxy cluster survey (REFLEX II). V. Exploring a local underdensity in the southern sky. Astron. Astrophys. 574, A26 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Bonamente, M., Joy, M.K., LaRoque, S.J., et al.: Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Bondi, H.: Spherically symmetrical models in general relativity. MNRAS 107, 410 (1947)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Bono, G., Stetson, P.B., VandenBerg, D.A., et al.: On a new near-infrared method to estimate the absolute ages of star clusters: NGC 3201 as a first test case. Astrophys. J. 708, L74 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Bonvin, V., Courbin, F., Suyu, S.H., et al.: H0LiCOW - V. New COSMOGRAIL time delays of HE 0435–1223: H\(_{0}\) to 3.8 per cent precision from strong lensing in a flat \(\varLambda \)CDM model. MNRAS 465, 4914 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Bourdin, H., Mazzotta, P., Kozmanyan, A., Jones, C., Vikhlinin, A.: Pressure profiles of distant galaxy clusters in the Planck catalogue. Astrophys. J. 843, 72 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Bronder, T.J., Hook, I.M., Astier, P., et al.: SNLS spectroscopy: testing for evolution in type Ia supernovae. Astron. Astrophys. 477, 717 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Bull, P., Clifton, T., Ferreira, P.G.: Kinematic Sunyaev-Zel’dovich effect as a test of general radial inhomogeneity in Lemaître-Tolman-Bondi cosmology. Phys. Rev. D 85, 024002 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Cai, R.-G., Wang, A.: Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. J. Cosmol. Astropart. Phys. 3, 002 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Caldwell, R.R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Caldwell, R.R., Dave, R., Steinhardt, P.J.: Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582 (1998)ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w\(<\)-1 causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Carroll, S.M., Hoffman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than -1? Phys. Rev. D 68, 023509 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Célérier, M.-N.: Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353, 63 (2000)ADSGoogle Scholar
  48. 48.
    Chen, Y., Kumar, S., Ratra, B.: Determining the hubble constant from hubble parameter measurements. Astrophys. J. 835, 86 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Cheng, C., Huang, Q.: An accurate determination of the Hubble constant from baryon acoustic oscillation datasets. Sci. China Phys. Mech. Astron. 58, 095684 (2015)ADSGoogle Scholar
  50. 50.
    Chevallier, M., Polarski, D.: Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 10, 213 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    Chiba, T., Okabe, T., Yamaguchi, M.: Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    Clarkson, C.: Establishing homogeneity of the universe in the shadow of dark energy. C.R. Phys. 13, 682 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Clarkson, C., Clifton, T., February, S.: Perturbation theory in Lemaître-Tolman-Bondi cosmology. J. Cosmol. Astropart. Phys. 6, 25 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Conley, A., Guy, J., Sullivan, M., et al.: Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astrophys. J. Suppl. Ser. 192, 1 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Copeland, E.J., Garousi, M.R., Sami, M., Tsujikawa, S.: What is needed of a tachyon if it is to be the dark energy? Phys. Rev. D 71, 043003 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Coulter, D.A., Foley, R.J., Kilpatrick, C.D., et al.: Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    Dai, M., Wang, Y.: Sampling the probability distribution of type Ia supernova lightcurve parameters in cosmological analysis. MNRAS 459, 1819 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    de Grijs, R., Wicker, J.E., Bono, G.: Clustering of local group distances: publication bias or correlated measurements? I the large magellanic cloud. Astron. J. 147, 122 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    Delabrouille, J., de Bernardis, P., Bouchet, F.R., et al.: Exploring cosmic origins with CORE: survey requirements and mission design. (2017). arXiv:1706.04516
  63. 63.
    Delubac, T., Bautista, J.E., Busca, N.G., et al.: Baryon acoustic oscillations in the Ly\(\alpha \) forest of BOSS DR11 quasars. Astron. Astrophys. 574, A59 (2015)CrossRefGoogle Scholar
  64. 64.
    Deng, X.-M.: A modified generalized chaplygin gas as the unified dark matter-dark energy revisited. Braz. J. Phys. 41, 333 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Deser, S.: Introduction to Jebsen’s paper. Gen. Rel. Grav. 37, 2251 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    DESI Collaboration; Aghamousa, A., Aguilar, J., et al.: The DESI experiment part I: science, targeting, and survey design. (2016). arXiv:1611.00036
  67. 67.
    Dev, A., Jain, D., Lohiya, D.: Power law cosmology—a viable alternative. (2008). arXiv:0804.3491
  68. 68.
    Dev, A., Safonova, M., Jain, D., Lohiya, D.: Cosmological tests for a linear coasting cosmology. Phys. Lett. B 548, 12 (2002)ADSzbMATHCrossRefGoogle Scholar
  69. 69.
    Dhawan, S., Jha, S.W., Leibundgut, B.: Measuring the hubble constant with type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 609, A72 (2018)ADSCrossRefGoogle Scholar
  70. 70.
    Di Valentino, E., Melchiorri, A., Silk, J.: Reconciling Planck with the local value of H\(_{0}\) in extended parameter space. Phys. Lett. B 761, 242 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    Ding, X., Biesiada, M., Cao, S., Li, Z., Zhu, Z.-H.: Is there evidence for dark energy evolution? Astrophys. J. 803, L22 (2015)ADSCrossRefGoogle Scholar
  72. 72.
    Dolgov, A., Halenka, V., Tkachev, I.: Power-law cosmology, SN Ia, and BAO. J. Cosmol. Astropart. Phys. 10, 047 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    Dolgov, A.D.: Higher spin fields and the problem of the cosmological constant. Phys. Rev. D 55, 5881 (1997)ADSCrossRefGoogle Scholar
  74. 74.
    Doran, M., Schwindt, J.-M., Wetterich, C.: Structure formation and the time dependence of quintessence. Phys. Rev. D 64, 123520 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    du Mas des Bourboux, H., Le Goff, J.-M., Blomqvist, M., et al.: Baryon acoustic oscillations from the complete SDSS-III Ly\(\alpha \)-quasar cross-correlation function at z = 2.4. Astron. Astrophys. 608, A130 (2017)CrossRefGoogle Scholar
  76. 76.
    Efstathiou, G.: H\(_{0}\) revisited. MNRAS 440, 1138 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    Efstathiou, G., Sutherland, W.J., Maddox, S.J.: The cosmological constant and cold dark matter. Nature 348, 705 (1990)ADSCrossRefGoogle Scholar
  78. 78.
    Einstein, A.: Die Feldgleichungen der Gravitation, pp. 844–847. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin (1915)zbMATHGoogle Scholar
  79. 79.
    Einstein, A.: Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie, pp. 142–152. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin (1917)zbMATHGoogle Scholar
  80. 80.
    Eisenstein, D.J., Hu, W.: Baryonic features in the matter transfer function. Astrophys. J. 496, 605 (1998)ADSCrossRefGoogle Scholar
  81. 81.
    Eisenstein, D.J., Zehavi, I., Hogg, D.W., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    Ellis, G.F.R.: On the definition of distance in general relativity: I. M. H. Etherington (Philosophical Magazine ser. 7, vol. 15, 761 (1933)). Gen. Relativ. Gravit. 39, 1047 (2007)ADSzbMATHCrossRefGoogle Scholar
  83. 83.
    Enea Romano, A.: Hubble trouble or Hubble bubble? (2016). arXiv:1609.04081
  84. 84.
    Enqvist, K., Mattsson, T.: The effect of inhomogeneous expansion on the supernova observations. J. Cosmol. Astropart. Phys. 2, 19 (2007)ADSCrossRefGoogle Scholar
  85. 85.
    February, S., Larena, J., Smith, M., Clarkson, C.: Rendering dark energy void. MNRAS 405, 2231 (2010)ADSGoogle Scholar
  86. 86.
    Feeney, S.M., Mortlock, D.J., Dalmasso, N.: Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder. (2017). arXiv:1707.00007
  87. 87.
    Feng, C.-J., Shen, X.-Y., Li, P., Li, X.-Z.: A new class of parametrization for dark energy without divergence. J. Cosmol. Astropart. Phys. 9, 023 (2012)ADSCrossRefGoogle Scholar
  88. 88.
    Fernández Arenas, D., Terlevich, E., Terlevich, R., et al.: An independent determination of the local Hubble constant. MNRAS 474, 1250 (2018)ADSCrossRefGoogle Scholar
  89. 89.
    Filippenko, A.V.: Type Ia supernovae and cosmology. In: Sion, E.M., Vennes, S., Shipman, H.I. (eds.) White Dwarfs: Cosmological and Galactic Probes. Astrophysics and Space Science Library, pp. 97–133. Springer, New York (2005)CrossRefGoogle Scholar
  90. 90.
    Follin, B., Knox, L.: Insensitivity of the distance ladder hubble constant determination to Cepheid calibration modeling choices. (2017). arXiv:1707.01175
  91. 91.
    Font-Ribera, A., McDonald, P., Mostek, N., et al.: DESI and other dark energy experiments in the era of neutrino mass measurements. J. Cosmol. Astropart. Phys. 5, 023 (2014)ADSCrossRefGoogle Scholar
  92. 92.
    Freedman, W.L.: Correction: cosmology at a crossroads. Nat. Astron. 1, 0169 (2017)ADSCrossRefGoogle Scholar
  93. 93.
    Freedman, W.L., Madore, B.F.: The hubble constant. Ann. Rev. Astron. Astrophys. 48, 673 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    Freedman, W.L., Madore, B.F., Gibson, B.K., et al.: Final results from the hubble space telescope key project to measure the hubble constant. Astrophys. J. 553, 47 (2001)ADSCrossRefGoogle Scholar
  95. 95.
    Freedman, W.L., Madore, B.F., Scowcroft, V., et al.: Carnegie hubble program: a mid-infrared calibration of the hubble constant. Astrophys. J. 758, 24 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    Friedmann, A.: Über die Krümmung des Raumes. Z. Angew. Phys. 10, 377 (1922)zbMATHGoogle Scholar
  97. 97.
    Friedmann, A.: Über die Möglichkeit einer welt mit konstanter negativer Krümmung des Raumes. Z. Angew. Phys. 21, 326 (1924)MathSciNetzbMATHGoogle Scholar
  98. 98.
    Collaboration, Gaia, Prusti, T., de Bruijne, J.H.J., et al.: The Gaia mission. Astron. Astrophys. 595, A1 (2016)CrossRefGoogle Scholar
  99. 99.
    Gao, F., Braatz, J.A., Reid, M.J., et al.: The megamaser cosmology project. IX. Black hole masses for three maser galaxies, the megamaser cosmology project. Astrophys. J. 834, 52 (2017)ADSCrossRefGoogle Scholar
  100. 100.
    Garcia-Bellido, J., Haugbølle, T.: Confronting Lemaitre Tolman Bondi models with observational cosmology. J. Cosmol. Astropart. Phys. 4, 3 (2008)ADSCrossRefGoogle Scholar
  101. 101.
    Gaztañaga, E., Cabré, A., Hui, L.: Clustering of luminous red galaxies—IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). MNRAS 399, 1663 (2009)ADSCrossRefGoogle Scholar
  102. 102.
    Gehlaut, S., Kumar, P., Geetanjali, Lohiya, D.: A concordant “freely coasting cosmology”. (2003). arXiv:astro-ph/0306448
  103. 103.
    Goldhaber, G., Groom, D.E., Kim, A., et al.: Timescale stretch parameterization of type Ia supernova B-band light curves. Astrophys. J. 558, 359 (2001)ADSCrossRefGoogle Scholar
  104. 104.
    Goldstein, A., Veres, P., Burns, E., et al.: An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys. J. 848, L14 (2017)ADSCrossRefGoogle Scholar
  105. 105.
    Goobar, A.: Low R\(_{V}\) from circumstellar dust around supernovae. Astrophys. J. 686, L103 (2008)ADSCrossRefGoogle Scholar
  106. 106.
    Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)ADSzbMATHCrossRefGoogle Scholar
  107. 107.
    Guy, J., Astier, P., Baumont, S., et al.: SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11 (2007)ADSCrossRefGoogle Scholar
  108. 108.
    Guy, J., Astier, P., Nobili, S., Regnault, N., Pain, R.: SALT: a spectral adaptive light curve template for type Ia supernovae. Astron. Astrophys. 443, 781 (2005)ADSCrossRefGoogle Scholar
  109. 109.
    Haridasu, B.S., Luković, V.V., D’Agostino, R., Vittorio, N.: Strong evidence for an accelerating universe. Astron. Astrophys. 600, L1 (2017a)ADSCrossRefGoogle Scholar
  110. 110.
    Haridasu, B.S., Luković, V.V., Vittorio, N.: Isotropic vs. anisotropic components of BAO data: a tool for model selection. (2017b). arXiv:1711.03929
  111. 111.
    Harvey, A.: How Einstein discovered dark energy. (2012). arXiv:1211.6338
  112. 112.
    Hayden, B.T., Gupta, R.R., Garnavich, P.M., et al.: The fundamental metallicity relation reduces type Ia SN hubble residuals more than host mass alone. Astrophys. J. 764, 191 (2013)ADSCrossRefGoogle Scholar
  113. 113.
    Hicken, M., Wood-Vasey, W.M., Blondin, S., et al.: Improved dark energy constraints from \(\sim \)100 new CfA supernova type Ia light curves. Astrophys. J. 700, 1097 (2009)ADSCrossRefGoogle Scholar
  114. 114.
    Hillebrandt, W., Niemeyer, J.C.: Type IA supernova explosion models. Ann. Rev. Astron. Astrophys. 38, 191 (2000)ADSCrossRefGoogle Scholar
  115. 115.
    Hinshaw, G., Larson, D., Komatsu, E.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013)ADSCrossRefGoogle Scholar
  116. 116.
    Hinton, S.R., Kim, A., Davis, T.M.: Accounting for sample selection in Bayesian analyses. (2017). arXiv:1706.03856
  117. 117.
    Holwerda, B.W., Reynolds, A., Smith, M., Kraan-Korteweg, R.C.: SN Ia host galaxy properties and the dust extinction distribution. MNRAS 446, 3768 (2015)ADSCrossRefGoogle Scholar
  118. 118.
    Hoscheit, B.L., Barger, A.J.: Large local void, supernovae type Ia, and the kinematic Sunyaev-Zel’dovich effect in a lambda-LTB model. In: American Astronomical Society Meeting Abstracts, Vol. 230 (2017)Google Scholar
  119. 119.
    Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168 (1929)ADSzbMATHCrossRefGoogle Scholar
  120. 120.
    Huchra, J.P.: The hubble constant. Science 256, 321 (1992)ADSCrossRefGoogle Scholar
  121. 121.
    Jackson, N.: The hubble constant. Living Rev. Relat. 10, 4 (2007)ADSzbMATHCrossRefGoogle Scholar
  122. 122.
    Jang, I.S., Lee, M.G.: The tip of the red giant branch distances to typa Ia supernova host galaxies. V. NGC 3021, NGC 3370, and NGC 1309 and the value of the hubble constant. Astrophys. J. 836, 74 (2017)ADSCrossRefGoogle Scholar
  123. 123.
    Jassal, H.K., Bagla, J.S., Padmanabhan, T.: WMAP constraints on low redshift evolution of dark energy. MNRAS 356, L11 (2005)ADSCrossRefGoogle Scholar
  124. 124.
    Jimenez, R., Loeb, A.: Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 573, 37 (2002)ADSCrossRefGoogle Scholar
  125. 125.
    Johansson, J., Thomas, D., Pforr, J., et al.: SN Ia host galaxy properties from Sloan digital sky survey-II spectroscopy. MNRAS 435, 1680 (2013)ADSCrossRefGoogle Scholar
  126. 126.
    John, M.V., Joseph, K.B.: Generalized Chen-Wu type cosmological model. Phys. Rev. D 61, 087304 (2000)ADSCrossRefGoogle Scholar
  127. 127.
    Jones, D.O., Scolnic, D.M., Riess, A.G., et al.: Measuring dark energy properties with photometrically classified pan-STARRS supernovae. II. Cosmological parameters. (2017). arXiv:1710.00846
  128. 128.
    Joudaki, S., Mead, A., Blake, C., et al.: KiDS-450: testing extensions to the standard cosmological model. MNRAS 471, 1259 (2017)ADSCrossRefGoogle Scholar
  129. 129.
    Joyce, A., Jain, B., Khoury, J., Trodden, M.: Beyond the cosmological standard model. Phys. Rep. 568, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  130. 130.
    Joyce, A., Lombriser, L., Schmidt, F.: Dark energy versus modified gravity. Annu. Rev. Nucl. Part. Sci. 66, 95 (2016)ADSCrossRefGoogle Scholar
  131. 131.
    Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)ADSzbMATHCrossRefGoogle Scholar
  132. 132.
    Kasen, D.: Secondary maximum in the near-infrared light curves of type Ia supernovae. Astrophys. J. 649, 939 (2006)ADSCrossRefGoogle Scholar
  133. 133.
    Kattner, S., Leonard, D.C., Burns, C.R., et al.: The standardizability of type Ia supernovae in the near-infrared: evidence for a peak-luminosity versus decline-rate relation in the near-infrared. Publ. Astron. Soc. Pac. 124, 114 (2012)ADSCrossRefGoogle Scholar
  134. 134.
    Keenan, R.C., Barger, A.J., Cowie, L.L.: Evidence for a \(\sim \)300 megaparsec scale under-density in the local galaxy distribution. Astrophys. J. 775, 62 (2013)ADSCrossRefGoogle Scholar
  135. 135.
    Kelly, P.L., Hicken, M., Burke, D.L., Mandel, K.S., Kirshner, R.P.: Hubble residuals of nearby type Ia supernovae are correlated with host galaxy masses. Astrophys. J. 715, 743 (2010)ADSCrossRefGoogle Scholar
  136. 136.
    Kessler, R., Becker, A.C., Cinabro, D., et al.: First-year sloan digital sky survey-II supernova results: hubble diagram and cosmological parameters. Astrophys. J. Suppl. Ser. 185, 32 (2009)ADSCrossRefGoogle Scholar
  137. 137.
    Kessler, R., Scolnic, D.: Correcting type Ia supernova distances for selection biases and contamination in photometrically identified samples. Astrophys. J. 836, 56 (2017)ADSCrossRefGoogle Scholar
  138. 138.
    Kim, A.G.: Type Ia supernova intrinsic magnitude dispersion and the fitting of cosmological parameters. Publ. Astron. Soc. Pac. 123, 230 (2011)ADSCrossRefGoogle Scholar
  139. 139.
    Kim, A.G., Aldering, G., Antilogus, P., et al.: Type Ia supernova hubble residuals and host-galaxy properties. Astrophys. J. 784, 51 (2014)ADSCrossRefGoogle Scholar
  140. 140.
    Kirshner, R.P.: Hubble’s diagram and cosmic expansion. Proc. Natl. Acad. Sci. 101, 8 (2003)ADSCrossRefGoogle Scholar
  141. 141.
    Komatsu, E., Dunkley, J., Nolta, M.R., et al.: Five-year wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330 (2009)ADSCrossRefGoogle Scholar
  142. 142.
    Komatsu, E., Smith, K.M., Dunkley, J., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011)ADSCrossRefGoogle Scholar
  143. 143.
    Kowalski, M., Rubin, D., Aldering, G., et al.: Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749 (2008)ADSCrossRefGoogle Scholar
  144. 144.
    Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  145. 145.
    Kristian, J., Sachs, R.K.: Observations in cosmology. Astrophys. J. 143, 379 (1966)ADSMathSciNetCrossRefGoogle Scholar
  146. 146.
    Kuo, C.Y., Braatz, J.A., Lo, K.Y., et al.: The megamaser cosmology project. VI. Observations of NGC 6323. Astrophys. J. 800, 26 (2015)ADSCrossRefGoogle Scholar
  147. 147.
    Kuo, C.Y., Braatz, J.A., Reid, M.J., et al.: The megamaser cosmology project. V. An angular-diameter distance to NGC 6264 at 140 Mpc. Astrophys. J. 767, 155 (2013)ADSCrossRefGoogle Scholar
  148. 148.
    Laureijs, R., Amiaux, J., Arduini, S., et al.: Euclid definition study report. (2011). arXiv:1110.3193
  149. 149.
    Leavitt, H.S.: 1777 variables in the Magellanic clouds. Ann. Harv. Coll. Observ. 60, 87 (1908)ADSGoogle Scholar
  150. 150.
    Lemaître, G.: Un univers homogène de masse constant et de rayon croissant, rendant compte de la vitesse radiale des nébeleuses extra-galactiques. Ann. Soc. Sci. Brux 47, 49 (1927)zbMATHGoogle Scholar
  151. 151.
    Lemaître, G.: L’Univers en expansion. Ann. Soc. Sci. Brux. 53, 51 (1933)zbMATHGoogle Scholar
  152. 152.
    Lewis, G.F., Barnes, L.A., Kaushik, R.: Primordial nucleosynthesis in the R\(_{h}\) = ct cosmology: pouring cold water on the simmering Universe. MNRAS 460, 291 (2016)ADSCrossRefGoogle Scholar
  153. 153.
    Li, M., Li, N., Wang, S., Lanjun, Z.: More evidence for the redshift dependence of color from the JLA supernova sample using redshift tomography. MNRAS 460, 2586–2592 (2016)ADSCrossRefGoogle Scholar
  154. 154.
    Li, M., Li, X.-D., Wang, S., Wang, Y.: Dark energy. Commun. Theor. Phys. 56, 525 (2011)ADSzbMATHCrossRefGoogle Scholar
  155. 155.
    Liao, K., Fan, X.-L., Ding, X., Biesiada, M., Zhu, Z.-H.: Precision cosmology from future lensed gravitational wave and electromagnetic signals. Nat. Commun. 8, 1148 (2017)ADSCrossRefGoogle Scholar
  156. 156.
    Lin, W., Ishak, M.: Cosmological discordances: a new measure, marginalization effects, and application to geometry versus growth current data sets. Phys. Rev. D 96, 023532 (2017)ADSCrossRefGoogle Scholar
  157. 157.
    Linder, E.V.: Exploring the expansion history of the universe. Phys. Rev. Lett. 90, 091301 (2003)ADSCrossRefGoogle Scholar
  158. 158.
    Linder, E.V., Huterer, D.: How many dark energy parameters? Phys. Rev. D 72, 043509 (2005)ADSCrossRefGoogle Scholar
  159. 159.
    Linder, E.V., Jenkins, A.: Cosmic structure growth and dark energy. Mon. Not. R. Astron. Soc. 346, 573 (2003)ADSCrossRefGoogle Scholar
  160. 160.
    Lonappan, A.I., Kumar, S., Ruchika, Dinda, B.R., Sen, A.A.: Bayesian evidences for dark energy models in light of current observational data. (2017). arXiv:1707.00603
  161. 161.
    Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    Lovelock, D.: The four-dimensionality of space and the Einstein tensor. J. Math. Phys. 13, 874 (1972)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Luković, V., Cabella, P., Vittorio, N.: Dark matter in cosmology. Int. J. Mod. Phys. A 29, 1443001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  164. 164.
    Luković, V.V., D’Agostino, R., Vittorio, N.: Is there a concordance value for H\(_{0}\)? Astron. Astrophys. 595, A109 (2016)ADSCrossRefGoogle Scholar
  165. 165.
    Maartens, R.: Is the universe homogeneous? Philos. Trans. R. Soc. Lond. Ser. A 369, 5115 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Malmquist, K.G.: On some relations in stellar statistics. Medd. Fran Lunds Astron. Observ. Ser. I 100, 1 (1922)ADSzbMATHGoogle Scholar
  167. 167.
    March, M.C., Trotta, R., Berkes, P., Starkman, G.D., Vaudrevange, P.M.: Improved constraints on cosmological parameters from type Ia supernova data. MNRAS 418, 2308 (2011)ADSCrossRefGoogle Scholar
  168. 168.
    Marra, V., Amendola, L., Sawicki, I., Valkenburg, W.: Cosmic variance and the measurement of the local hubble parameter. Phys. Rev. Lett. 110, 241305 (2013)ADSCrossRefGoogle Scholar
  169. 169.
    Marriner, J., Bernstein, J.P., Kessler, R., et al.: A more general model for the intrinsic scatter in type Ia supernova distance moduli. Astrophys. J. 740, 72 (2011)ADSCrossRefGoogle Scholar
  170. 170.
    McCrea, W.H.: The cosmical constant. Q. J. R. Astron. Soc. 12, 140 (1971)ADSGoogle Scholar
  171. 171.
    Melia, F.: On recent claims concerning the R\(_{h}\) = ct universe. MNRAS 446, 1191 (2015)ADSCrossRefGoogle Scholar
  172. 172.
    Melia, F.: The linear growth of structure in the R\(_{h}\) = ct universe. MNRAS 464, 1966 (2017)ADSCrossRefGoogle Scholar
  173. 173.
    Melia, F., Shevchuk, A.S.H.: The R\(_{h}\)=ct universe. MNRAS 419, 2579 (2012)ADSCrossRefGoogle Scholar
  174. 174.
    Milne, E.A.: Relativity, Gravitation and World-Structure. Oxford University Press, Oxford (1935)zbMATHGoogle Scholar
  175. 175.
    Mitra, A.: Why the big bang model does not allow inflationary and cyclic cosmologies though mathematically one can obtain any model with favourable assumptions. New A 30, 46 (2014)ADSCrossRefGoogle Scholar
  176. 176.
    Moffat, J.W.: Inhomogeneous cosmology Redux. (2016). arXiv:1608.00534
  177. 177.
    Monelli, M., Testa, V., Bono, G., et al.: The absolute age of the globular cluster M15 using near-infrared adaptive optics images from PISCES/LBT. Astrophys. J. 812, 25 (2015)ADSCrossRefGoogle Scholar
  178. 178.
    Moreno-Raya, M.E., Mollá, M., López-Sánchez, Á.R., et al.: On the dependence of type Ia SNe luminosities on the metallicity of their host galaxies. Astrophys. J. 818, L19 (2016)ADSCrossRefGoogle Scholar
  179. 179.
    Moresco, M.: Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z \(\sim \) 2. MNRAS 450, L16 (2015)ADSCrossRefGoogle Scholar
  180. 180.
    Moresco, M., Cimatti, A., Jimenez, R., et al.: Improved constraints on the expansion rate of the universe up to z \(\sim \) 1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 8, 006 (2012)ADSCrossRefGoogle Scholar
  181. 181.
    Moresco, M., Pozzetti, L., Cimatti, A., et al.: A 6% measurement of the Hubble parameter at \(z\sim 0.45\): direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys 2016, 014 (2016)CrossRefGoogle Scholar
  182. 182.
    Mukherjee, P., Parkinson, D., Corasaniti, P.S., Liddle, A.R., Kunz, M.: Model selection as a science driver for dark energy surveys. MNRAS 369, 1725 (2006)ADSCrossRefGoogle Scholar
  183. 183.
    Nadathur, S., Sarkar, S.: Reconciling the local void with the CMB. Phys. Rev. D 83, 063506 (2011)ADSCrossRefGoogle Scholar
  184. 184.
    Nielsen, J.T., Guffanti, A., Sarkar, S.: Marginal evidence for cosmic acceleration from type Ia supernovae. Sci. Rep. 6, 35596 (2016)ADSCrossRefGoogle Scholar
  185. 185.
    Nobili, S., Goobar, A.: The colour-lightcurve shape relation of type Ia supernovae and the reddening law. Astron. Astrophys. 487, 19 (2008)ADSCrossRefGoogle Scholar
  186. 186.
    Ooba, J., Ratra, B., Sugiyama, N.: Planck 2015 constraints on the non-flat \(\phi \)CDM inflation model. (2017). arXiv:1712.08617
  187. 187.
    O’Raifeartaigh, C., O’Keeffe, M., Nahm, W., Mitton, S.: One hundred years of the cosmological constant: from ’superfluous stunt’ to dark energy. (2017). arXiv:1711.06890
  188. 188.
    Padmanabhan, T., Choudhury, T.R.: Can the clustered dark matter and the smooth dark energy arise from the same scalar field? Phys. Rev. D 66, 081301 (2002)ADSCrossRefGoogle Scholar
  189. 189.
    Park, C.-G., Ratra, B.: Using the tilted flat-\(\varLambda \)CDM and the non-flat \(\varLambda \)CDM inflation models to measure cosmological parameters from a compilation of observational data. (2018). arXiv:1801.00213
  190. 190.
    Peebles, P.J.E., Ratra, B.: Cosmology with a time variable cosmological constant. Astrophys. J. 325, L17 (1988)ADSCrossRefGoogle Scholar
  191. 191.
    Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of \(\varOmega \) and \(\varLambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)ADSzbMATHCrossRefGoogle Scholar
  192. 192.
    Phillips, M.M.: The absolute magnitudes of type IA supernovae. Astrophys. J. 413, L105 (1993)ADSCrossRefGoogle Scholar
  193. 193.
    Planck Collaboration; Ade, P.A.R., Aghanim, N., et al.: Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)Google Scholar
  194. 194.
    Planck Collaboration; Ade, P.A.R., Aghanim, N., et al.: Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys. 594, A27 (2016a)Google Scholar
  195. 195.
    Planck Collaboration; Ade, P.A.R., Aghanim, N., et al.: Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys. 594, A13 (2016b)Google Scholar
  196. 196.
    Planck Collaboration; Aghanim, N., Ashdown, M., et al.: Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. Astron. Astrophys. 596, A107 (2016c)Google Scholar
  197. 197.
    Pourhassan, B., Kahya, E.O.: FRW cosmology with the extended Chaplygin gas. Adv. High Energy. (2014). arXiv:1405.0667
  198. 198.
    Pskovskii, I.P.: Light curves, color curves, and expansion velocity of type I supernovae as functions of the rate of brightness decline. Sov. Ast. 21, 675 (1977)ADSGoogle Scholar
  199. 199.
    Pun, C.S.J., Gergely, L., Mak, M.K., et al.: Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models. Phys. Rev. D 77, 063528 (2008)ADSCrossRefGoogle Scholar
  200. 200.
    Rani, S., Altaibayeva, A., Shahalam, M., Singh, J.K., Myrzakulov, R.: Constraints on cosmological parameters in power-law cosmology. J. Cosmol. Astropart. Phys. 3, 031 (2015)ADSCrossRefGoogle Scholar
  201. 201.
    Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  202. 202.
    Ratsimbazafy, A.L., Loubser, S.I., Crawford, S.M., et al.: Age-dating luminous red galaxies observed with the Southern African large telescope. MNRAS 467, 3239 (2017)ADSCrossRefGoogle Scholar
  203. 203.
    Reid, M.J., Braatz, J.A., Condon, J.J., et al.: The megamaser cosmology project. I. Very long baseline interferometric observations of UGC 3789. Astrophys. J. 695, 287 (2009)ADSCrossRefGoogle Scholar
  204. 204.
    Reid, M.J., Braatz, J.A., Condon, J .J., et al.: The Megamaser cosmology project. IV. A direct measurement of the hubble constant from UGC 3789. Astrophys. J. 767, 154 (2013)ADSCrossRefGoogle Scholar
  205. 205.
    Richardson, D., Jenkins III, R.L., Wright, J., Maddox, L.: Absolute-magnitude distributions of supernovae. Astron. J. 147, 118 (2014)ADSCrossRefGoogle Scholar
  206. 206.
    Riess, A.G., Casertano, S., Yuan, W., et al.: New parallaxes of galactic Cepheids from spatially scanning the hubble space telescope: implications for the hubble constant. (2018). arXiv:1801.01120
  207. 207.
    Riess, A.G., Filippenko, A.V., Challis, P., et al.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  208. 208.
    Riess, A.G., Li, W., Stetson, P.B., et al.: Cepheid calibrations from the hubble space telescope of the luminosity of two recent type Ia supernovae and a redetermination of the hubble constant. Astrophys. J. 627, 579 (2005)ADSCrossRefGoogle Scholar
  209. 209.
    Riess, A.G., Macri, L., Casertano, S., et al.: A 3% solution: determination of the hubble constant with the hubble space telescope and wide field camera 3. Astrophys. J. 730, 119 (2011)ADSCrossRefGoogle Scholar
  210. 210.
    Riess, A.G., Macri, L., Casertano, S., et al.: A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. Astrophys. J. 699, 539 (2009)ADSCrossRefGoogle Scholar
  211. 211.
    Riess, A .G., Macri, L .M., Hoffmann, S .L., et al.: A 2.4% determination of the local value of the hubble constant. Astrophys. J. 826, 56 (2016)ADSCrossRefGoogle Scholar
  212. 212.
    Robertson, H.P.: Kinematics and world-structure. Astrophys. J. 82, 284 (1935)ADSzbMATHCrossRefGoogle Scholar
  213. 213.
    Rowan-Robinson, M.: The Cosmological Distance Ladder: Distance and Time in the Universe. W.H. Freeman, New York (1985)Google Scholar
  214. 214.
    Rubin, D., Aldering, G., Barbary, K., et al.: UNITY: confronting supernova cosmology’s statistical and systematic uncertainties in a unified Bayesian framework. Astrophys. J. 813, 137 (2015)ADSCrossRefGoogle Scholar
  215. 215.
    Rubin, D., Hayden, B.: Is the expansion of the universe accelerating? All signs point to yes. Astrophys. J. 833, L30 (2016)ADSCrossRefGoogle Scholar
  216. 216.
    Saha, A., Thim, F., Tammann, G.A., Reindl, B., Sandage, A.: Cepheid distances to SNe Ia host galaxies based on a revised photometric zero point of the HST WFPC2 and new PL relations and metallicity corrections. Astrophys. J. Suppl. Ser. 165, 108 (2006)ADSCrossRefGoogle Scholar
  217. 217.
    Sahni, V., Shafieloo, A., Starobinsky, A.A.: Model-independent evidence for dark energy evolution from Baryon acoustic oscillations. Astrophys. J. 793, L40 (2014)ADSCrossRefGoogle Scholar
  218. 218.
    Sandage, A., Tammann, G.A., Saha, A., et al.: The hubble constant: a summary of the hubble space telescope program for the luminosity calibration of type Ia supernovae by means of cepheids. Astrophys. J. 653, 843 (2006)ADSCrossRefGoogle Scholar
  219. 219.
    Sarkar, S.: Is the evidence for dark energy secure? Gen. Rel. Grav. 40, 269 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  220. 220.
    Savchenko, V., Ferrigno, C., Kuulkers, E., et al.: INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. 848, L15 (2017)ADSCrossRefGoogle Scholar
  221. 221.
    Schrödinger, E.: Über ein Lösungssystem der allgemein kovarianten. Phys. Z. 19, 20–22 (1918)zbMATHGoogle Scholar
  222. 222.
    Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6, 461 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  223. 223.
    Scolnic, D.M., Jones, D.O., Rest, A., et al.: The complete light-curve sample of spectroscopically confirmed type Ia supernovae from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. (2017). arXiv:1710.00845
  224. 224.
    Shafer, D.L.: Robust model comparison disfavors power law cosmology. Phys. Rev. D 91, 103516 (2015)ADSCrossRefGoogle Scholar
  225. 225.
    Shafieloo, A.: Crossing statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem. J. Cosmol. Astropart. Phys. 5, 024 (2012)ADSCrossRefGoogle Scholar
  226. 226.
    Shariff, H., Jiao, X., Trotta, R., van Dyk, D.A.: BAHAMAS: new analysis of type Ia supernovae reveals inconsistencies with standard cosmology. Astrophys. J. 827, 1 (2016)ADSCrossRefGoogle Scholar
  227. 227.
    Sievers, J.L., Hlozek, R.A., Nolta, M.R., et al.: The Atacama cosmology telescope: cosmological parameters from three seasons of data. J. Cosmol. Astropart. Phys. 10, 060 (2013)ADSCrossRefGoogle Scholar
  228. 228.
    Simon, J., Verde, L., Jimenez, R.: Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 71, 123001 (2005)ADSCrossRefGoogle Scholar
  229. 229.
    Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)ADSzbMATHCrossRefGoogle Scholar
  230. 230.
    Spergel, D.N., Bean, R., Doré, O., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377 (2007)ADSCrossRefGoogle Scholar
  231. 231.
    Spergel, D.N., Verde, L., Peiris, H.V., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003)ADSCrossRefGoogle Scholar
  232. 232.
    Steinhardt, P .J., Wang, L.: Cosmological tracking solutions. Phys. Rev. D 59, 123504 (1999)ADSCrossRefGoogle Scholar
  233. 233.
    Stern, D., Jimenez, R., Verde, L., Stanford, S.A., Kamionkowski, M.: Cosmic chronometers: constraining the equation of state of dark energy. II. A spectroscopic catalog of red galaxiesin galaxy clusters. Astrophys. J. Suppl. Ser. 188, 280 (2010)ADSCrossRefGoogle Scholar
  234. 234.
    Sundell, P., Mörtsell, E., Vilja, I.: Can a void mimic the \(\varLambda \) in \(\varLambda \)CDM? J. Cosmol. Astropart. Phys. 8, 037 (2015)ADSMathSciNetCrossRefGoogle Scholar
  235. 235.
    Suzuki, N., Rubin, D., Lidman, C., et al.: The hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above z\(>\)1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012)ADSCrossRefGoogle Scholar
  236. 236.
    Tammann, G.A., Reindl, B.: The luminosity of supernovae of type Ia from tip of the red-giant branch distances and the value of H\(_{0}\). Astron. Astrophys. 549, A136 (2013)ADSCrossRefGoogle Scholar
  237. 237.
    Terlevich, R., Melnick, J.: The dynamics and chemical composition of giant extragalactic H II regions. MNRAS 195, 839 (1981)ADSCrossRefGoogle Scholar
  238. 238.
    Tokutake, M., Ichiki, K., Yoo, C.-M.: Observational constraint on spherical inhomogeneity with CMB and local hubble parameter. (2017). arXiv:1712.04229
  239. 239.
    Tolman, R.C.: Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. 20, 169 (1934)ADSzbMATHCrossRefGoogle Scholar
  240. 240.
    Tripp, R.: A two-parameter luminosity correction for Type IA supernovae. Astron. Astrophys. 331, 815 (1998)ADSGoogle Scholar
  241. 241.
    Tsujikawa, S.: Quintessence: a review. Class. Quant. Gravity 30, 214003 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  242. 242.
    Tutusaus, I., Lamine, B., Blanchard, A., et al.: Power law cosmology model comparison with CMB scale information. Phys. Rev. D 94, 103511 (2016)ADSCrossRefGoogle Scholar
  243. 243.
    Tutusaus, I., Lamine, B., Dupays, A., Blanchard, A.: Is cosmic acceleration proven by local cosmological probes? Astron. Astrophys. 602, A73 (2017)ADSCrossRefGoogle Scholar
  244. 244.
    Uemura, M., Kawabata, K.S., Ikeda, S., Maeda, K.: Variable selection for modeling the absolute magnitude at maximum of type Ia supernovae. Publ. Astron. Soc. Pac. 67, 55 (2015)ADSCrossRefGoogle Scholar
  245. 245.
    Vargas, C.Z., Falciano, F.T., Reis, R.R.R.: Discrepancy in parameter constraints for LTB models using BAO and SNIa. Class. Quant. Gravity 34, 025002 (2017)ADSCrossRefGoogle Scholar
  246. 246.
    Verde, L., Protopapas, P., Jimenez, R.: Planck and the local universe: quantifying the tension. Phys. Dark Univ. 2, 166 (2013)CrossRefGoogle Scholar
  247. 247.
    Walker, A.G.: On Milne’s theory of world-structure. Proc. Lond. Math. Soc. s2–42, 90 (1937)MathSciNetzbMATHCrossRefGoogle Scholar
  248. 248.
    Wang, B., Han, Z.: Progenitors of type Ia supernovae. New A Rev. 56, 122 (2012)ADSCrossRefGoogle Scholar
  249. 249.
    Wang, Y., Xu, L., Zhao, G.-B.: A measurement of the hubble constant using galaxy redshift surveys. Astrophys. J. 849, 84 (2017)ADSCrossRefGoogle Scholar
  250. 250.
    Wei, H.: Observational constraints on cosmological models with the updated long gamma-ray bursts. J. Cosmol. Astropart. Phys. 1008, 020 (2010)ADSCrossRefGoogle Scholar
  251. 251.
    Wen, S., Wang, S., Luo, X.: Comparing dark energy models with current observational data. (2017). arXiv:1708.03143
  252. 252.
    Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)ADSCrossRefGoogle Scholar
  253. 253.
    Weyant, A., Wood-Vasey, W.M., Joyce, R., et al.: The first data release from SweetSpot: 74 supernovae in 36 nights on WIYN+WHIRC. (2017). arXiv:1703.02402
  254. 254.
    Whitbourn, J.R., Shanks, T.: The local hole revealed by galaxy counts and redshifts. MNRAS 437, 2146 (2014)ADSCrossRefGoogle Scholar
  255. 255.
    Willick, J.A., Batra, P.: A determination of the hubble constant from cepheid distances and a model of the local peculiar velocity field. Astrophys. J. 548, 564 (2001)ADSCrossRefGoogle Scholar
  256. 256.
    Wojtak, R., Prada, F.: Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models. MNRAS 470, 4493 (2017)ADSCrossRefGoogle Scholar
  257. 257.
    Wood-Vasey, W.M., Miknaitis, G., Stubbs, C.W., et al.: Observational constraints on the nature of dark energy: first cosmological results from the ESSENCE supernova survey. Astrophys. J. 666, 694 (2007)ADSCrossRefGoogle Scholar
  258. 258.
    Yang, W., Pan, S., Paliathanasis, A.: Latest astronomical constraints on some nonlinear parametric dark energy models. MNRAS 475(2), 2605–2613 (2018)ADSCrossRefGoogle Scholar
  259. 259.
    Zeldovich, Y.B.: Cosmological constant and elementary particles. JETP Lett. 6, 316 (1967)ADSGoogle Scholar
  260. 260.
    Zhang, B.R., Childress, M.J., Davis, T.M., et al.: A blinded determination of H\(_{0}\) from low-redshift type Ia supernovae, calibrated by Cepheid variables. MNRAS 471, 2254 (2017)ADSCrossRefGoogle Scholar
  261. 261.
    Zhang, C., Zhang, H., Yuan, S., et al.: Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky survey data release seven. Res. Astron. Astrophys. 14, 1221 (2014)ADSCrossRefGoogle Scholar
  262. 262.
    Zhang, Z.-S., Zhang, T.-J., Wang, H., Ma, C.: Testing the Copernican principle with the Hubble parameter. Phys. Rev. D 91, 063506 (2015)ADSCrossRefGoogle Scholar
  263. 263.
    Zhao, G.-B., Raveri, M., Pogosian, L., et al.: Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627 (2017)ADSCrossRefGoogle Scholar
  264. 264.
    Zhu, Z.-H., Hu, M., Alcaniz, J.S., Liu, Y.-X.: Testing power-law cosmology with galaxy clusters. Astron. Astrophys. 483, 15 (2008)ADSCrossRefGoogle Scholar
  265. 265.
    Zibin, J.P.: Scalar perturbations on Lemaître-Tolman-Bondi spacetimes. Phys. Rev. D 78, 043504 (2008)ADSMathSciNetCrossRefGoogle Scholar
  266. 266.
    Zibin, J.P.: Can decaying modes save void models for acceleration? Phys. Rev. D 84, 123508 (2011)ADSCrossRefGoogle Scholar
  267. 267.
    Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896 (1999)ADSCrossRefGoogle Scholar
  268. 268.
    Zumalacárregui, M., García-Bellido, J., Ruiz-Lapuente, P.: Tension in the void: cosmic rulers strain inhomogeneous cosmologies. J. Cosmol. Astropart. Phys. 10, 009 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vladimir V. Luković
    • 1
    • 2
  • Balakrishna S. Haridasu
    • 3
  • Nicola Vittorio
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomeItaly
  2. 2.Sezione INFNUniversità di Roma “Tor Vergata”RomeItaly
  3. 3.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations