Foundations of Physics

, Volume 48, Issue 10, pp 1407–1429 | Cite as

Status of the Asymptotic Safety Paradigm for Quantum Gravity and Matter

  • Astrid Eichhorn
Part of the following topical collections:
  1. Black holes, Gravitational waves and Space Time Singularities


In the asymptotic safety paradigm, a quantum field theory reaches a regime with quantum scale invariance in the ultraviolet, which is described by an interacting fixed point of the Renormalization Group. Compelling hints for the viability of asymptotic safety in quantum gravity exist, mainly obtained from applications of the functional Renormalization Group. The impact of asymptotically safe quantum fluctuations of gravity at and beyond the Planck scale could at the same time induce an ultraviolet completion for the Standard Model of particle physics with high predictive power.


Quantum gravity Asymptotic safety Standard model 



I thank the organizers of the workshop on Black Holes, Gravitational Waves and Spacetime Singularities for the invitation to a particularly inspiring workshop. It is a pleasure to thank N. Christiansen, P. Donà, H. Gies, A. Held, P. Labus, S. Lippoldt, J. Pawlowski, R. Percacci, M. Reichert and F. Versteegen for enjoyable and fruitful collaborations on gravity-matter systems, some part of which is reflected in these notes. I am indebted to A. Held and F. Versteegen for help in making this summary (hopefully) more understandable. I acknowledge funding by the DFG within the Emmy–Noether-program under grant no. Ei-1037-1 and support by the Perimeter Institute for Theoretical Physics through the Emmy–Noether-visiting fellow program.


  1. 1.
    ’t Hooft, G., Veltman, M.J.G.: One loop divergencies in the theory of gravitation. Ann. Poincare Phys. Theor. A 20, 69 (1974)ADSMathSciNetGoogle Scholar
  2. 2.
    Deser, S., Nieuwenhuizen, Pv: Nonrenormalizability of quantized fermion gravitation interactions. Lett. Nuovo Cim. 2, 218 (1974)Google Scholar
  3. 3.
    Deser, S., Nieuwenhuizen, Pv: Nonrenormalizability of the quantized Einstein–Maxwell system. Phys. Rev. Lett 32, 245 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    Goroff, M.H., Sagnotti, A.: The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266, 709 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    van de Ven, A.E.M.: Two loop quantum gravity. Nucl. Phys. B 378, 309 (1992)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Donoghue, J.F.: Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72, 2996 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Frohlich, J.: On the triviality of lambda (phi**4) in D-dimensions theories and the approach to the critical point in \(\text{ D } >=\) four-dimensions. Nucl. Phys. B 200, 281 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    Callaway, D.J.E.: Triviality pursuit: can elementary scalar particles exist? Phys. Rep. 167, 241 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Maiani, L., Parisi, G., Petronzio, R.: Bounds on the number and masses of quarks and leptons. Nucl. Phys. B 136, 115 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    Cabibbo, N., Maiani, L., Parisi, G., Petronzio, R.: Bounds on the fermions and Higgs Boson masses in grand unified theories. Nucl. Phys. B 158, 295 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    Dashen, R.F., Neuberger, H.: How to get an upper bound on the Higgs mass. Phys. Rev. Lett. 50, 1897 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    Callaway, D.J.E.: Nontriviality of gauge theories with elementary scalars and upper bounds on Higgs masses. Nucl. Phys. B 233, 189 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    Beg, M.A.B., Panagiotakopoulos, C., Sirlin, A.: Mass of the Higgs Boson in the canonical realization of the Weinberg–Salam theory. Phys. Rev. Lett. 52, 883 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    Lindner, M.: Implications of triviality for the standard model. Z. Phys. C 31, 295 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    Kuti, J., Lin, L., Shen, Y.: Upper bound on the Higgs mass in the standard model. Phys. Rev. Lett. 61, 678 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Hambye, T., Riesselmann, K.: Matching conditions and Higgs mass upper bounds revisited. Phys. Rev. D 55, 7255 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Gell-Mann, M., Low, F.E.: Quantum electrodynamics at small distances. Phys. Rev. 95, 1300 (1954)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gockeler, M., Horsley, R., Linke, V., Rakow, P.E.L., Schierholz, G., Stuben, H.: Is there a Landau pole problem in QED? Phys. Rev. Lett. 80, 4119 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Gockeler, M., Horsley, R., Linke, V., Rakow, P.E.L., Schierholz, G., Stuben, H.: Resolution of the Landau pole problem in QED. Nucl. Phys. Proc. Suppl. 63, 694 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Gies, H., Jaeckel, J.: Renormalization flow of QED. Phys. Rev. Lett. 93, 110405 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Weinberg, S.: UV divergences in quantum theories of gravitation. In: Hawking, S.W., Israel, W. (eds.) General Relativity, pp. 790–831. Cambridge University Press, Cambridge (1980)Google Scholar
  22. 22.
    Wilson, K.G., Fisher, M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    Reuter, M., Wetterich, C.: Indications for gluon condensation for nonperturbative flow equations. arXiv:9411227 [hep-th]
  24. 24.
    Reuter, M., Wetterich, C.: Gluon condensation in nonperturbative flow equations. Phys. Rev. D 56, 7893 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Eichhorn, A., Gies, H., Pawlowski, J.M.: Gluon condensation and scaling exponents for the propagators in Yang–Mills theory. Phys. Rev. D 83, 045014 (2011). Erratum: Phys. Rev. D 83, 069903 (2011)Google Scholar
  26. 26.
    Shaposhnikov, M., Wetterich, C.: Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683, 196 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Harst, U., Reuter, M.: QED coupled to QEG. J. High Energy Phys. 1105, 119 (2011)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Eichhorn, A., Held, A.: Top mass from asymptotic safety. Phys. Lett. B 777, 217 (2018). ADSCrossRefGoogle Scholar
  29. 29.
    Eichhorn, A., Versteegen, F.: Upper bound on the Abelian gauge coupling from asymptotic safety. JHEP 1801, 030 (2018). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wetterich, C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    Morris, T.R.: The exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 9, 2411 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Berges, J., Tetradis, N., Wetterich, C.: Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Polonyi, J.: Lectures on the functional renormalization group method. Cent. Eur. J. Phys. 1, 1 (2003)CrossRefGoogle Scholar
  34. 34.
    Pawlowski, J.M.: Aspects of the functional renormalisation group. Ann. Phys. 322, 2831 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Delamotte, B.: An Introduction to the Nonperturbative Renormalization Group. Lecture Notes in Physics, vol. 852, pp. 49–132. Springer, Heidelberg (2012)zbMATHCrossRefGoogle Scholar
  36. 36.
    Rosten, O.J.: Fundamentals of the Exact Renormalization Group. arXiv:1003.1366 [hep-th]
  37. 37.
    Braun, J.: Fermion interactions and universal behavior in strongly interacting theories. J. Phys. G 39, 033001 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Gies, H.: Introduction to the Functional RG and Applications to Gauge Theories. Lecture Notes in Physics, vol. 852, pp. 287–348. Springer, Berlin (2012)zbMATHCrossRefGoogle Scholar
  39. 39.
    Litim, D.F.: Optimized renormalization group flows. Phys. Rev. D 64, 105007 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Manrique, E., Reuter, M.: Bare action and regularized functional integral of asymptotically safe quantum gravity. Phys. Rev. D 79, 025008 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Morris, T.R., Slade, Z.H.: Solutions to the reconstruction problem in asymptotic safety. J. High Energy Phys. 1511, 094 (2015)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Canet, L., Delamotte, B., Mouhanna, D., Vidal, J.: Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order partial**4. Phys. Rev. B 68, 064421 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    Litim, D.F., Zappala, D.: Ising exponents from the functional renormalisation group. Phys. Rev. D 83, 085009 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Eichhorn, A., Mesterhzy, D., Scherer, M.M.: Multicritical behavior in models with two competing order parameters. Phys. Rev. E 88, 042141 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Knorr, B.: Ising and Gross–Neveu model in next-to-leading order. Phys. Rev. B 94(24), 245102 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Jüttner, A., Litim, D.F., Marchais, E.: Global Wilson–Fisher fixed points. Nucl. Phys. B 921, 769 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Eichhorn, A.: On unimodular quantum gravity. Class. Quant. Gravity 30, 115016 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Benedetti, D.: Essential nature of Newton?s constant in unimodular gravity. Gen. Relat. Gravit. 48(5), 68 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Eichhorn, A.: The Renormalization Group flow of unimodular f(R) gravity. J. High Energy Phys. 1504, 096 (2015)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Gies, H., Knorr, B., Lippoldt, S.: Generalized parametrization dependence in quantum gravity. Phys. Rev. D 92(8), 084020 (2015)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Ohta, N., Percacci, R., Pereira, A.D.: Gauges and functional measures in quantum gravity I: Einstein theory. J. High Energy Phys. 1606, 115 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Reuter, M.: Non-perturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Eichhorn, A., Koslowski, T.: Towards phase transitions between discrete and continuum quantum spacetime from the Renormalization Group. Phys. Rev. D 90(10), 104039 (2014). arXiv:1701.03029 ADSCrossRefGoogle Scholar
  54. 54.
    Manrique, E., Reuter, M.: Bimetric truncations for quantum Einstein gravity and asymptotic safety. Ann. Phys. 325, 785 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Manrique, E., Reuter, M., Saueressig, F.: Matter induced bimetric actions for gravity. Ann. Phys. 326, 440 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Manrique, E., Reuter, M., Saueressig, F.: Bimetric renormalization group flows in quantum Einstein gravity. Ann. Phys. 326, 463 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Becker, D., Reuter, M.: En route to background independence: broken split-symmetry, and how to restore it with bi-metric average actions. Ann. Phys. 350, 225 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Christiansen, N., Litim, D.F., Pawlowski, J.M., Rodigast, A.: Fixed points and infrared completion of quantum gravity. Phys. Lett. B 728, 114 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Litim, D.F., Pawlowski, J.M.: Renormalization group flows for gauge theories in axial gauges. J. High Energy Phys. 0209, 049 (2002). [hep-th/0203005]ADSCrossRefGoogle Scholar
  60. 60.
    Dietz, J.A., Morris, T.R.: Background independent exact renormalization group for conformally reduced gravity. J. High Energy Phys. 1504, 118 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Labus, P., Morris, T.R., Slade, Z.H.: Background independence in a background dependent renormalization group. Phys. Rev. D 94(2), 024007 (2016)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Morris, T.R.: Large curvature and background scale independence in single-metric approximations to asymptotic safety. J. High Energy Phys. 1611, 160 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Percacci, R., Vacca, G.P.: The background scale Ward identity in quantum gravity. Eur. Phys. J. C 77(1), 52 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    Nieto, C.M., Percacci, R., Skrinjar, V.: Split Weyl transformations in quantum gravity. arXiv:1708.09760 [gr-qc]
  65. 65.
    Gies, H.: Renormalizability of gauge theories in extra dimensions. Phys. Rev. D 68, 085015 (2003)ADSCrossRefGoogle Scholar
  66. 66.
    Morris, T.R.: Renormalizable extra-dimensional models. J. High Energy Phys. 0501, 002 (2005)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Knechtli, F., Rinaldi, E.: Extra-dimensional models on the lattice. Int. J. Mod. Phys. A 31(22), 1643002 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Gastmans, R., Kallosh, R., Truffin, C.: Quantum gravity near two-dimensions. Nucl. Phys. B 133, 417 (1978)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Christensen, S.M., Duff, M.J.: Quantum gravity in two + \(\epsilon \) dimensions. Phys. Lett. 79B, 213 (1978)ADSCrossRefGoogle Scholar
  70. 70.
    Kawai, H., Ninomiya, M.: Renormalization group and quantum gravity. Nucl. Phys. B 336, 115 (1990)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Nink, A.: Field parametrization dependence in asymptotically safe quantum gravity. Phys. Rev. D 91(4), 044030 (2015)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    Falls, K.: Physical renormalisation schemes and asymptotic safety in quantum gravity. arXiv:1702.03577 [hep-th]
  73. 73.
    Codello, A., Percacci, R., Rahmede, C.: Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann. Phys. 324, 414 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Reuter, M., Saueressig, F.: Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation. Phys. Rev. D 65, 065016 (2002)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    Lauscher, O., Reuter, M.: UV fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 65, 025013 (2002)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    Litim, D.F.: Fixed points of quantum gravity. Phys. Rev. Lett. 92, 201301 (2004)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    Lauscher, O., Reuter, M.: Flow equation of quantum Einstein gravity in a higher derivative truncation. Phys. Rev. D 66, 025026 (2002)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    Machado, P.F., Saueressig, F.: On the renormalization group flow of f(R)-gravity. Phys. Rev. D 77, 124045 (2008)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    Falls, K., Litim, D.F., Nikolakopoulos, K., Rahmede, C.: A bootstrap towards asymptotic safety. arXiv:1301.4191 [hep-th]
  80. 80.
    Falls, K., Litim, D.F., Nikolakopoulos, K., Rahmede, C.: Further evidence for asymptotic safety of quantum gravity. Phys. Rev. D 93(10), 104022 (2016)ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    Benedetti, D., Machado, P.F., Saueressig, F.: Asymptotic safety in higher-derivative gravity. Mod. Phys. Lett. A 24, 2233 (2009)ADSzbMATHCrossRefGoogle Scholar
  82. 82.
    Benedetti, D., Machado, P.F., Saueressig, F.: Taming perturbative divergences in asymptotically safe gravity. Nucl. Phys. B 824, 168 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Stelle, K.S.: Classical gravity with higher derivatives. Gen. Relat. Gravit. 9, 353 (1978)ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    Bonanno, A., Reuter, M.: Modulated ground state of gravity theories with stabilized conformal factor. Phys. Rev. D 87(8), 084019 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    Barnaby, N., Kamran, N.: Dynamics with infinitely many derivatives: the initial value problem. J. High Energy Phys. 0802, 008 (2008)ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    Gies, H., Knorr, B., Lippoldt, S., Saueressig, F.: Gravitational two-loop counterterm is asymptotically safe. Phys. Rev. Lett 116(21), 211302 (2016)ADSCrossRefGoogle Scholar
  87. 87.
    Benedetti, D., Caravelli, F.: The Local potential approximation in quantum gravity. J. High Energy Phys. 1206, 017 (2012). Erratum: J. High Energy Phys. 1210, 157 (2012)Google Scholar
  88. 88.
    Dietz, J.A., Morris, T.R.: Asymptotic safety in the f(R) approximation. J. High Energy Phys. 1301, 108 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Dietz, J.A., Morris, T.R.: Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety. J. High Energy Phys. 1307, 064 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Demmel, M., Saueressig, F., Zanusso, O.: A proper fixed functional for four-dimensional quantum Einstein gravity. J. High Energy Phys. 1508, 113 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Ohta, N., Percacci, R., Vacca, G.P.: Renormalization Group Equation and scaling solutions for f(R) gravity in exponential parametrization. Eur. Phys. J. C 76(2), 46 (2016)ADSCrossRefGoogle Scholar
  92. 92.
    Gonzalez-Martin, S., Morris, T.R., Slade, Z.H.: Asymptotic solutions in asymptotic safety. Phys. Rev. D 95(10), 106010 (2017)ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    Codello, A., D’Odorico, G., Pagani, C.: Consistent closure of renormalization group flow equations in quantum gravity. Phys. Rev. D 89(8), 081701 (2014)ADSCrossRefGoogle Scholar
  94. 94.
    Christiansen, N., Knorr, B., Pawlowski, J.M., Rodigast, A.: Global flows in quantum gravity. Phys. Rev. D 93(4), 044036 (2016)ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    Christiansen, N., Knorr, B., Meibohm, J., Pawlowski, J.M., Reichert, M.: Local Quantum Gravity. Phys. Rev. D 92(12), 121501 (2015)ADSCrossRefGoogle Scholar
  96. 96.
    Christiansen, N.: Four-Derivative Quantum Gravity Beyond Perturbation Theory. arXiv:1612.06223 [hep-th]
  97. 97.
    Denz, T., Pawlowski, J. M., Reichert, M.: Towards apparent convergence in asymptotically safe quantum gravity. arXiv:1612.07315 [hep-th]
  98. 98.
    Knorr, B., Lippoldt, S.: Correlation functions on a curved background. arXiv:1707.01397 [hep-th]
  99. 99.
    Manrique, E., Rechenberger, S., Saueressig, F.: Asymptotically safe Lorentzian gravity. Phys. Rev. Lett. 106, 251302 (2011)ADSCrossRefGoogle Scholar
  100. 100.
    Rechenberger, S., Saueressig, F.: A functional renormalization group equation for foliated spacetimes. J. High Energy Phys. 1303, 010 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Houthoff, W.B., Kurov, A., Saueressig, F.: Impact of topology in foliated Quantum Einstein Gravity. arXiv:1705.01848 [hep-th]
  102. 102.
    Lauscher, O., Reuter, M.: Fractal spacetime structure in asymptotically safe gravity. JHEP 0510, 050 (2005)ADSMathSciNetCrossRefGoogle Scholar
  103. 103.
    Reuter, M., Saueressig, F.: Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data. JHEP 1112, 012 (2011)ADSzbMATHCrossRefGoogle Scholar
  104. 104.
    Calcagni, G., Eichhorn, A., Saueressig, F.: Probing the quantum nature of spacetime by diffusion. Phys. Rev. D 87(12), 124028 (2013)ADSCrossRefGoogle Scholar
  105. 105.
    Bonanno, A., Reuter, M.: Renormalization group improved black hole space-times. Phys. Rev. D 62, 043008 (2000)ADSCrossRefGoogle Scholar
  106. 106.
    Bonanno, A., Reuter, M.: Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D 73, 083005 (2006)ADSMathSciNetCrossRefGoogle Scholar
  107. 107.
    Bonanno, A., Contillo, A., Percacci, R.: Inflationary solutions in asymptotically safe f(R) theories. Class. Quant. Grav. 28, 145026 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Falls, K., Litim, D.F.: Black hole thermodynamics under the microscope. Phys. Rev. D 89, 084002 (2014)ADSCrossRefGoogle Scholar
  109. 109.
    Koch, B., Saueressig, F.: Structural aspects of asymptotically safe black holes. Class. Quant. Grav. 31, 015006 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Koch, B., Saueressig, F.: Black holes within asymptotic safety. Int. J. Mod. Phys. A 29(8), 1430011 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Koch, B., Rioseco, P., Contreras, C.: Scale setting for self-consistent backgrounds. Phys. Rev. D 91(2), 025009 (2015)ADSCrossRefGoogle Scholar
  112. 112.
    Bonanno, A., Platania, A.: Asymptotically safe inflation from quadratic gravity. Phys. Lett. B 750, 638 (2015)ADSCrossRefGoogle Scholar
  113. 113.
    Bonanno, A., Koch, B., Platania, A.: Cosmic censorship in quantum Einstein gravity. arXiv:1610.05299
  114. 114.
    Bonanno, A., Saueressig, F.: Asymptotically safe cosmology—a status report. arXiv:1702.04137
  115. 115.
    Tronconi, A.: Asymptotically safe non-minimal inflation. J. Cosmol. Astropart. Phys. 1707(07), 015 (2017)ADSMathSciNetCrossRefGoogle Scholar
  116. 116.
    Wetterich, C.: Graviton fluctuations erase the cosmological constant. Phys. Lett. B 773, 6 (2017)ADSzbMATHCrossRefGoogle Scholar
  117. 117.
    Donà, P., Eichhorn, A., Percacci, R.: Matter matters in asymptotically safe quantum gravity. Phys. Rev. D 89(8), 084035 (2014)ADSCrossRefGoogle Scholar
  118. 118.
    Donà, P., Eichhorn, A., Percacci, R.: Consistency of matter models with asymptotically safe quantum gravity. Can. J. Phys. 93(9), 988 (2015)ADSCrossRefGoogle Scholar
  119. 119.
    Donà, P., Percacci, R.: Functional renormalization with fermions and tetrads. Phys. Rev. D 87(4), 045002 (2013)ADSCrossRefGoogle Scholar
  120. 120.
    Eichhorn, A., Lippoldt, S.: Quantum gravity and standard-model-like fermions. Phys. Lett. B 767, 142 (2017)ADSCrossRefGoogle Scholar
  121. 121.
    Biemans, J., Platania, A., Saueressig, F.: Renormalization group fixed points of foliated gravity-matter systems. J. High Energy Phys. 1705, 093 (2017). [arXiv:1702.06539 [hep-th]]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  122. 122.
    Meibohm, J., Pawlowski, J.M., Reichert, M.: Asymptotic safety of gravity-matter systems. Phys. Rev. D 93(8), 084035 (2016)ADSMathSciNetCrossRefGoogle Scholar
  123. 123.
    Donà, P., Eichhorn, A., Labus, P., Percacci, R.: Asymptotic safety in an interacting system of gravity and scalar matter. Phys. Rev. D 93(4), 044049 (2016). Erratum: Phys. Rev. D 93, no. 12, 129904 (2016)Google Scholar
  124. 124.
    Bezrukov, F., Kalmykov, M.Y., Kniehl, B.A., Shaposhnikov, M.: Higgs boson mass and new physics. J. High Energy Phys. 1210, 140 (2012)ADSCrossRefGoogle Scholar
  125. 125.
    Buttazzo, D., Degrassi, G., Giardino, P.P., Giudice, G.F., Sala, F., Salvio, A., Strumia, A.: Investigating the near-criticality of the Higgs boson. J. High Energy Phys. 1312, 089 (2013)ADSCrossRefGoogle Scholar
  126. 126.
    Pietrykowski, A.R.: Gauge dependence of gravitational correction to running of gauge couplings. Phys. Rev. Lett. 98, 061801 (2007)ADSCrossRefGoogle Scholar
  127. 127.
    Ellis, J., Mavromatos, N.E.: On the interpretation of gravitational corrections to gauge couplings. Phys. Lett. B 711, 139 (2012)ADSCrossRefGoogle Scholar
  128. 128.
    Anber, M.M., Donoghue, J.F., El-Houssieny, M.: Running couplings and operator mixing in the gravitational corrections to coupling constants. Phys. Rev. D 83, 124003 (2011)ADSCrossRefGoogle Scholar
  129. 129.
    Gonzalez-Martin, S., Martin, C.P.: Do the gravitational corrections to the beta functions of the quartic and Yukawa couplings have an intrinsic physical meaning? arXiv:1707.06667
  130. 130.
    Antoniadis, I., Iliopoulos, J., Tomaras, T.N.: Gauge invariance in quantum gravity. Nucl. Phys. B 267, 497 (1986). ADSCrossRefGoogle Scholar
  131. 131.
    Carlip, S.: Spontaneous dimensional reduction in quantum gravity. Int. J. Mod. Phys. D 25(12), 1643003 (2016)ADSCrossRefGoogle Scholar
  132. 132.
    Daum, J.E., Harst, U., Reuter, M.: Running gauge coupling in asymptotically safe quantum gravity. J. High Energy Phys. 1001, 084 (2010)ADSzbMATHCrossRefGoogle Scholar
  133. 133.
    Folkerts, S., Litim, D.F., Pawlowski, J.M.: Asymptotic freedom of Yang–Mills theory with gravity. Phys. Lett. B 709, 234 (2012)ADSMathSciNetCrossRefGoogle Scholar
  134. 134.
    Christiansen, N., Eichhorn, A.: An asymptotically safe solution to the U(1) triviality problem. Phys. Lett. B 770, 154 (2017)ADSCrossRefGoogle Scholar
  135. 135.
    Zanusso, O., Zambelli, L., Vacca, G.P., Percacci, R.: Gravitational corrections to Yukawa systems. Phys. Lett. B 689, 90 (2010)ADSCrossRefGoogle Scholar
  136. 136.
    Vacca, G.P., Zanusso, O.: Asymptotic safety in Einstein gravity and scalar-fermion matter. Phys. Rev. Lett. 105, 231601 (2010)ADSCrossRefGoogle Scholar
  137. 137.
    Oda, Ky, Yamada, M.: Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity. Class. Quant. Gravity 33(12), 125011 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Hamada, Y., Yamada, M.: Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system. arXiv:1703.09033 [hep-th]
  139. 139.
    Eichhorn, A., Held, A., Pawlowski, J.M.: Quantum-gravity effects on a Higgs–Yukawa model. Phys. Rev. D 94(10), 104027 (2016)ADSMathSciNetCrossRefGoogle Scholar
  140. 140.
    Eichhorn, A., Held, A.: Viability of quantum-gravity induced ultraviolet completions for matter. arXiv:1705.02342 [gr-qc]
  141. 141.
    Eichhorn, A., Gies, H.: Light fermions in quantum gravity. New J. Phys. 13, 125012 (2011)ADSCrossRefGoogle Scholar
  142. 142.
    Meibohm, J., Pawlowski, J.M.: Chiral fermions in asymptotically safe quantum gravity. Eur. Phys. J. C 76(5), 285 (2016)ADSCrossRefGoogle Scholar
  143. 143.
    Eichhorn, A.: Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario. Phys. Rev. D 86, 105021 (2012)ADSCrossRefGoogle Scholar
  144. 144.
    Eichhorn, A.: Faddeev–Popov ghosts in quantum gravity beyond perturbation theory. Phys. Rev. D 87(12), 124016 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations