Advertisement

Foundations of Physics

, Volume 48, Issue 6, pp 611–627 | Cite as

(Information) Paradox Regained? A Brief Comment on Maudlin on Black Hole Information Loss

  • J. B. Manchak
  • James Owen Weatherall
Article

Abstract

We discuss some recent work by Tim Maudlin concerning Black Hole Information Loss. We argue, contra Maudlin, that there is a paradox, in the straightforward sense that there are propositions that appear true, but which are incompatible with one another. We discuss the significance of the paradox and Maudlin’s response to it.

Keywords

Black holes Information loss paradox Kodama–Wald theorem Evaporation event Global hyperbolicity 

References

  1. 1.
    Belot, G., Earman, J., Ruetsche, L.: The hawking information loss paradox: the anatomy of controversy. Br. J. Philos. Sci. 50(2), 189–229 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bernal, A.N., Sánchez, M.: On smooth Cauchy hypersurfaces and Gerochs splitting theorem. Commun. Math. Phys. 243(3), 461–470 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. No. 7. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  4. 4.
    Earman, J.: A Primer on Determinism. Springer, Dordrecht (1986)CrossRefGoogle Scholar
  5. 5.
    Earman, J.: Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes. Oxford University Press, Oxford (1995)Google Scholar
  6. 6.
    Earman, J.: Reassessing the prospects for a growing block model of the universe. Int. Stud. Philos. Sci. 22(2), 135–164 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ellis, G.F.: Astrophysical black holes may radiate, but they do not evaporate (2013). arXiv:1310.4771 Google Scholar
  8. 8.
    Fulling, S.A.: Aspects of Quantum Field Theory in Curved Spacetime, vol. 17. Cambridge University Press, Cambridge (1989)CrossRefzbMATHGoogle Scholar
  9. 9.
    Geroch, R.: Domain of dependence. J. Math. Phys. 11(2), 437–449 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Geroch, R.: Partial differential equations of physics (1996). arXiv:gr-qc/9602055 Google Scholar
  11. 11.
    Geroch, R., Horowitz, G.T.: Global structure of spacetimes. In: Penrose, R., Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 212–293. Cambridge University Press, Cambridge (1979)Google Scholar
  12. 12.
    Hajicek, P.: Causality in non-hausdorff space-times. Commun. Math. Phys. 21(1), 75–84 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hawking, S.W.: Black hole explosions. Nature 248(5443), 30–31 (1974)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14(10), 2460 (1976)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, New York (1973)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hawking, S., Sachs, R.: Causally continuous spacetimes. Commun. Math. Phys. 35(4), 287–296 (1974)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kodama, H.: Inevitability of a naked singularity associated with the black hole evaporation. Prog. Theor. Phys. 62, 1434–1435 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lycan, W.G.: What, exactly, is a paradox? Analysis 70(4), 615–622 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Manchak, J.B.: Global spacetime structure. In: Batterman, R. (ed.) The Oxford Handbook of Philosophy of Physics, pp. 578–606. Oxford University Press, Oxford (2013)Google Scholar
  21. 21.
    Mathur, S.D.: The fuzzball proposal for black holes: an elementary review. Fortschritte der Physik 53(7–8), 793–827 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Maudlin, T.: (Information) paradox lost (2017). arXiv:1705.03541 [physics.hist-ph]Google Scholar
  23. 23.
    McGrath, M.: Four-dimensionalism and the puzzles of coincidence. Oxf. Stud. Metaphys. 3, 143–176 (2007)Google Scholar
  24. 24.
    Penrose, R.: Singularities and time-asymmetry. In: Penrose, R., Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)Google Scholar
  25. 25.
    Quine, W.V.O.: The Ways of Paradox and Other Essays, pp. 3–20. Random House, New York (1966)Google Scholar
  26. 26.
    Rendall, A.D.: Partial Differential Equations in General Relativity. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  27. 27.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    Unruh, W.G., Wald, R.M.: Information loss. Rep. Prog. Phys. 80(9), 092002 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Wald, R.M.: Black holes, singularities and predictability. In: Christensen, S.M. (ed.) Quantum Theory of Gravity. Essays in Honor of the 60th Birthday of Bryce S. DeWitt, pp. 160–168. CRC Press, Boca Raton (1984)Google Scholar
  30. 30.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  31. 31.
    Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)zbMATHGoogle Scholar
  32. 32.
    Wallace, D.: Why black hole information loss is paradoxical (2017). arXiv:1710.03783 [gr-qc]Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations