Advertisement

Foundations of Physics

, Volume 48, Issue 5, pp 558–578 | Cite as

On Gravitational Energy in Newtonian Theories

  • Neil Dewar
  • James Owen Weatherall
Article
  • 205 Downloads
Part of the following topical collections:
  1. Philosophical Aspects in the Foundations of Physics

Abstract

There are well-known problems associated with the idea of (local) gravitational energy in general relativity. We offer a new perspective on those problems by comparison with Newtonian gravitation, and particularly geometrized Newtonian gravitation (i.e., Newton–Cartan theory). We show that there is a natural candidate for the energy density of a Newtonian gravitational field. But we observe that this quantity is gauge dependent, and that it cannot be defined in the geometrized (gauge-free) theory without introducing further structure. We then address a potential response by showing that there is an analogue to the Weyl tensor in geometrized Newtonian gravitation.

Keywords

Gravitational energy Newton-Cartan theory Geometrized Newtonian gravitation General relativity Gravitational stress Gravitational mass-momentum Newtonian Weyl tensor 

Notes

Acknowledgements

This paper is partially based upon work supported by the National Science Foundation under Grant No. 1331126. We are grateful to David Malament for helpful conversations about the material presented here, including suggesting the form of Eq. (23); to Erik Curiel for discussions about conformal invariance in the context of geometrized Newtonian gravitation; and to David Wallace for discussions of these and related ideas. The manuscript was improved by comments from James Read and two anonymous referees. Weatherall is grateful for feedback from an audience at the 18th UK/European Foundations of Physics Conference in London, UK.

References

  1. 1.
    Arnowitt, R., Deser, S., Misner, C.: Energy and the criteria for radiation in general relativity. Phys. Rev. 118(4), 1100 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnowitt, R., Deser, S., Misner, C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(3), 997 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bondi, H.: Gravitational waves in general relativity. Nature 186(4724), 535 (1960)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Bondi, H., McCrea, W.H.: Energy transfer by gravitation in Newtonian theory. Math. Proc. Cambridge Philos. Soc. 56(4), 410–413 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brading, K., Brown, H.R.: Symmetries and Noether’s theorems. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 89–109. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  6. 6.
    Cartan, E.: Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie). Annales scientifiques de l’École Normale Supérieure 40, 325–412 (1923)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cartan, E.: Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (suite). Annales scientifiques de l’École Normale Supérieure 41, 1–25 (1924)CrossRefzbMATHGoogle Scholar
  8. 8.
    Choquet-Brouhat, Y.: Two points of view on gravitational energy. In: Daruelle, N., Piran, T. (eds.) Gravitational Radiation, pp. 399–406. North Holland Press, Amsterdam (1983)Google Scholar
  9. 9.
    Cooperstock, F.I., Booth, D.J.: General-relativistic and Newtonian gravitational energy transfer. Il Nuovo Cimento B 2(1), 139–147 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    Curiel, E.: On geometric objects, the non-existence of a gravitational stress-energy tensor, and the uniqueness of the Einstein field equation, forthcoming in Studies in History and Philosophy of Modern Physics. References are to pre-print available at: http://strangebeautiful.com/papers/curiel-nonexist-grav-seten-uniq-efe.pdf; http://philsci-archive.pitt.edu/10985/ (2017)
  11. 11.
    Dewar, N.: Maxwell gravitation. Philos. Sci. (forthcoming). Pre-print available at http://philsci-archive.pitt.edu/12470/ (2017)
  12. 12.
    Dixon, W.G.: Special Relativity. Cambridge University Press, Cambridge, UK (1978)zbMATHGoogle Scholar
  13. 13.
    Duval, C., Künzle, H.P.: Dynamics of continua and particles from general covariance of Newtonian gravitation theory. Rep. Math. Phys. 13(3) (1978)Google Scholar
  14. 14.
    Ehlers, J.: Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. In: Nitsch, J., Pfarr, J., Stachow, E.-W. (eds.) Grundlagen Probleme der Modernen Physik. Bibliographisches Institut, Zurich (1981)Google Scholar
  15. 15.
    Ehlers, J.: Examples of Newtonian limits of relativistic spacetimes. Class. Quantum Gravity 14, A119–A126 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ellis, G.F.R.: Republication of: relativistic cosmology. Gen. Relativ. Gravit. 41(3), 581–660 (2009)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Ellis, G.F.R., Dunsby, P.K.S.: Newtonian evolution of the Weyl tensor. Astrophys. J. 479(1), 97–101 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Fletcher, S.C.: On the reduction of general relativity to Newtonian gravitation, unpublished manuscript (2014)Google Scholar
  19. 19.
    Friedman, M.: Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton University Press, Princeton, NJ (1983)Google Scholar
  20. 20.
    Geroch, R.: Energy extraction. Ann. N. Y. Acad. Sci. 224(1), 108–117 (1973)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Goldberg, J.N.: Invariant transformations, conservation laws, and energy-momentum. In: Held, A. (ed.) General Relativity and Gravitation, pp. 469–489. Plenum Press, New York, NY (1980)Google Scholar
  22. 22.
    Hawking, S.W.: Gravitational radiation in an expanding universe. J. Math. Phys. 9(4), 598–604 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    John, F.: Partial differential equations (1982)Google Scholar
  24. 24.
    Knox, E.: Newton-Cartan theory and teleparallel gravity: the force of a formulation. Stud. Hist. Philos. Mod. Phys. 42(4), 264–275 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Künzle, H.P.: Covariant Newtonian limit of Lorentz space-times. Gen. Relativ. Gravit. 7(5), 445–457 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lam, V.: Gravitational and nongravitational energy: the need for background structures. Philos. Sci. 78(5), 1012–1023 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Landau, L., Lifshitz, E.: The Classical Theory of Fields, 3rd edn. Pergamon Press, Oxford (1971) [1951]Google Scholar
  28. 28.
    Lehmkuhl, D.: Is spacetime a gravitational field? Philos. Found. Phys. 4, 83–110 (2008)CrossRefGoogle Scholar
  29. 29.
    Malament, D.: Newtonian gravity, limits, and the geometry of space. In: Colodny, R. (ed.) From Quarks to Quasars. University of Pittsburgh Press, Pittsburgh (1986)Google Scholar
  30. 30.
    Malament, D.B.: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. University of Chicago Press, Chicago (2012)CrossRefzbMATHGoogle Scholar
  31. 31.
    Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865)CrossRefGoogle Scholar
  32. 32.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H, Freeman and Company, San Francisco (1973)Google Scholar
  33. 33.
    Pitts, J.B.: Gauge-invariant localization of infinitely many gravitational energies from all possible auxiliary structures. Gen. Relativ. Gravit. 42(3), 601–622 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pooley, O.: Background independence, diffeomorphism invariance, and the meaning of coordinates. In: Lehmkuhl, D., Schiemann, G., Scholz, E. (eds.) Towards a Theory of Spaceme Theories. No. 13 in Einstein Studies. Birkhäuser, Basel (2017)Google Scholar
  35. 35.
    Saunders, S.: Rethinking Newton’s Principia. Philos. Sci. 80(1), 22–48 (2013)CrossRefGoogle Scholar
  36. 36.
    Synge, J.L.: Newtonian gravitational field theory. Il Nuovo Cimento B 8(2), 373–390 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    Szabados, L.B.: Quasi-local energy-momentum and angular momentum in general relativity. Living Rev. Relativ. 12(4) (2009)Google Scholar
  38. 38.
    Tong, D.: Lectures on quantum field theory (2007). http://www.damtp.cam.ac.uk/user/tong/qft.html
  39. 39.
    Trautman, A.: Foundations and current problem of general relativity. In: Deser, S., Ford, K.W. (eds.) Lectures on General Relativity, pp. 1–248. Prentice-Hall, Englewood Cliffs, NJ (1965)Google Scholar
  40. 40.
    Trautman, A.: Fiber bundles, gauge fields, and gravitation. In: Held, A. (ed.) General Relativity and Gravitation, pp. 287–308. Plenum Press, New York, NY (1980)Google Scholar
  41. 41.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  42. 42.
    Wallace, D.: Fundamental and emergent geometry in Newtonian physics. http://philsci-archive.pitt.edu/12497/ (2016)
  43. 43.
    Wallace, D.: More problems for Newtonian cosmology. Stud. Hist. Philos. Mod. Phys. 57, 35–40 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Weatherall, J.O.: On the status of the geodesic principle in Newtonian and relativistic physics. Stud. Hist. Philos. Mod. Phys. 42(4), 276–281 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Weatherall, J.O.: What is a singularity in geometrized Newtonian gravitation? Philos. Sci. 81(5), 1077–1089 (2014)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Weatherall, J.O.: Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent? Erkenntnis (2015a).  https://doi.org/10.1007/s10670-015-9783-5
  47. 47.
    Weatherall, J.O.: Maxwell-Huygens, Newton-Cartan, and Saunders-Knox spacetimes. Philos. Sci. (Forthcoming) (2015b). arXiv:1501.00148 [physics.hist-ph]
  48. 48.
    Weatherall, J.O.: Fiber bundles, Yang-Mills theory, and general relativity. Synthese 193(8), 2389–2425 (2016a)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Weatherall, J.O.: Understanding gauge. Philos. Sci. 83(5), 1039–1049 (2016b)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Weatherall, J.O.: Conservation, inertia, and spacetime geometry. Stud. Hist. Philos. Mod. Phys. (forthcoming) (2017a). arXiv:1702.01642 [physics.hist-ph]
  51. 51.
    Weatherall, J.O.: Inertial motion, explanation, and the foundations of classical space-time theories. In: Lehmkuhl, D., Schiemann, G., Scholz, E. (eds.) Towards a Theory of Spacetime Theories. Birkhäuser, Boston, MA (2017b). arXiv:1206.2980 [physics.hist-ph]Google Scholar
  52. 52.
    Weatherall, J.O., Manchak, J.B.: The geometry of conventionality. Philos. Sci. 81(2), 233–247 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLMU MunichMunichGermany
  2. 2.Department of Logic and Philosophy of ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations