Advertisement

Foundations of Physics

, Volume 48, Issue 1, pp 92–109 | Cite as

Quantum Bit Commitment and the Reality of the Quantum State

  • R. SrikanthEmail author
Article

Abstract

Quantum bit commitment is insecure in the standard non-relativistic quantum cryptographic framework, essentially because Alice can exploit quantum steering to defer making her commitment. Two assumptions in this framework are that: (a) Alice knows the ensembles of evidence E corresponding to either commitment; and (b) system E is quantum rather than classical. Here, we show how relaxing assumption (a) or (b) can render her malicious steering operation indeterminable or inexistent, respectively. Finally, we present a secure protocol that relaxes both assumptions in a quantum teleportation setting. Without appeal to an ontological framework, we argue that the protocol’s security entails the reality of the quantum state, provided retrocausality is excluded.

Keywords

Mistrustful quantum cryptography Bit commitment Reality of quantum state 

Notes

Acknowledgements

The author thanks DST-SERB, Govt. of India, for financial support provided through the project EMR/2016/004019.

References

  1. 1.
    Kent, A.: Unconditionally secure bit commitment. Phys. Rev. Lett. 83, 1447–1450 (1999)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109, 130501 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Kaniewski, J., Tomamichel, M., Hanggi, E., Wehner, S.: Secure bit commitment from relativistic constraints. Inf. Theory IEEE Trans. 59, 4687–4699 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lunghi, T., Kaniewski, J., Bussières, F., Houlmann, R., Tomamichel, M., Kent, A., Gisin, N., Wehner, S., Zbinden, H.: Experimental bit commitment based on quantum communication and special relativity. Phys. Rev. Lett. 111, 180504 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Lunghi, T., et al.: Practical relativistic bit commitment. Phys. Rev. Lett. 115, 030502 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Verbanis, E., Martin, A., Houlmann, R., Boso, G., Bussières, F., Zbinden, H.: 24-Hour relativistic bit commitment. Phys. Rev. Lett. 117, 140506 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    D’Ariano, G.M., Perinotti, P., Schlingemann, D.M., Werner, R.F.: A short impossibility proof of quantum bit commitment. Phys. Lett. A 377, 1076–1087 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14–18 (1993)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Disilvestro, L., Markham, D.: Quantum protocols within Spekkens’ toy model. Phys. Rev. A 95, 052324 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Spekkens, R.W.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75, 032110 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    He, G.-P.: Security bound of cheat sensitive quantum bit commitment. Sci. Rep. 5, 9398 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    He, G.-P.: Quantum key distribution based on orthogonal states allows secure quantum bit commitment. J. Phys. A 44, 445305 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    He, G.-P.: Simplified quantum bit commitment using single photon nonlocality. Quantum. Inf. Process. 13, 2195 (2014)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    He, G.-P.: Unconditionally secure quantum bit commitment using infinite-dimensional systems. arXiv:1709.01396
  18. 18.
    Yuen, H.P.: An unconditionally secure quantum bit commitment protocol (2012). arXiv:1212.0938
  19. 19.
    Yuen, H.P.: Impossibility proofs and quantum bit commitment (2008)Google Scholar
  20. 20.
    Cheung, C.-Y.: Quantum bit commitment using wheeler’s delayed choice experiment. arXiv:1504.05551
  21. 21.
    Song, Ya-Q., Yang, L.: Quantum bit commitment protocol based on counterfactual quantum cryptography. arXiv:1709.08490
  22. 22.
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  23. 23.
    Kent, A.: Impossibility of unconditionally secure commitment of a certified classical bit. Phys. Rev. A 61, 042301 (2000)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels and the cost of randomizing quantum information. arXiv:quant-ph/0003101
  25. 25.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)Google Scholar
  26. 26.
    Cheung, C.-Y.: Secret parameters in quantum bit commitment (2005). arXiv:quant-ph/0508180
  27. 27.
    Cheung, C.-Y.: Insecurity of quantum bit commitment with secret parameters (2006). arXiv:quant-ph/0601206
  28. 28.
    Ishizaka, S., Hiroshima, T.: Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing spooky action at a distance. Nature 454, 861–864 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Hensen, B., et al.: Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Suarez, A.: Is there a time ordering behind nonlocal correlations? arXiv:quant-ph/0110124
  34. 34.
    Aravinda, S., Srikanth, R.: Extending quantum mechanics entails extending special relativity. J. Phys. A 49, 205302 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
  36. 36.
    Leifer, M.S.: Is the quantum state real? an extended review of \(\psi \)-ontology theorems. Quanta 3, 67–155 (2014)CrossRefGoogle Scholar
  37. 37.
    Barrett, J.: Implications of teleportation for nonlocality. Phys. Rev. A 64, 042305 (2001)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Price, H.: Does time-symmetry imply retrocausality? how the quantum world says ‘maybe’? Stud. Hist. Phil. Sci. B 43, 75–83 (2012)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Werbos, P.J., Dolmatova, L.: Analog quantum computing (aqc) and the need for time-symmetric physics. Q. Inf. Proc. 15, 1273–1287 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Leifer, Matthew S., Pusey, Matthew F.: Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. Roy. Soc. Lond. A 473, (2017)Google Scholar
  41. 41.
    Hellwig, K.E., Kraus, K.: Formal description of measurements in local quantum field theory. Phys. Rev. D 1, 566–571 (1970)ADSCrossRefGoogle Scholar
  42. 42.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Poornaprajna Institute of Scientific ResearchBengaluruIndia

Personalised recommendations