Foundations of Physics

, Volume 47, Issue 10, pp 1309–1316 | Cite as

Quantum Mechanics is Incomplete but it is Consistent with Locality

  • H. S. Perlman


Quantum mechanics is seen to be incomplete not because it cannot explain the correlations that characterize entanglement without invoking either non-locality or realism, both of which, despite special relativity or no-go theorems, are at least conceivable. Quantum mechanics is incomplete, in a perhaps broader than hidden variable sense, because it fails to address within its theoretical structure the question of how even a single particle, by being in a given quantum state, causes the frequency distribution of measurement values specified by the state. This incompleteness of quantum mechanics as it is currently conceived is both fundamental and indefeasible. Failure to address the question of how the states of entangled particles are given effect to yield the correlations they specify is simply a particular albeit attention arresting instance of this incompleteness. But if that is so then quantum mechanics cannot be held to be inconsistent with locality.


Entangled quantum states Locality Realism Incompleteness 


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Aspect, A., Dalibard, J., Roger, G.: Experimental tests of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bohm, D.: Quantum Theory. Prentice-Hall, Upper Saddle River (1951)MATHGoogle Scholar
  4. 4.
    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D. 10, 526–535 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    Bell, J.S.: On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 38, 447–452 (1966)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Noûs 18, 569–589 (1984)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Eberhard, P.H.: Bell’s theorem and the different concepts of locality. Nuovo Cimento 46B, 392–419 (1978)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Clauser, J.F., Shimony, A.: Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    Giustina, M., Versteegh, M.A.M., Wengerowski, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J.-A., Abellan, C., Amaya, W., Pruneri, V., Mitchell, M.W., Beyer, J., Gerrits, T., Lita, A.E., Shalm, L.K., Nam, S.W., Scheidl, T., Ursin, R., Wittmann, B., Zeilinger, A.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401–250407 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Leggett, A.J.: Non-local hidden variable theories and quantum mechanics: an incompatibility theorem. Found. Phys. 33, 1469–1493 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Groblacher, S., Paterek, T., Kaltenbeck, R., Brukner, C., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature 446, 871–875 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Gleason, A.M.: Measures on the closed sub-spaces of Hilbert spaces. J. Math. Mech. 6, 885–893 (1957)MathSciNetMATHGoogle Scholar
  13. 13.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MathSciNetMATHGoogle Scholar
  14. 14.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 73–76. Kluwer, Dordrecht (1989)Google Scholar
  15. 15.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pan, J.-W., Bouwmeester, D., Daniell, M., Weifurtur, H., Zeilinger, A.: Experimental test of quantum non-locality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515–519 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Hardy, L.: Non-locality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Di Giuseppe, G., De Martini, F., Boschi, D.: Experimental test of the violation of local realism in quantum mechanics without Bell inequalities. Phys. Rev. A. 56, 176–181 (1997)ADSCrossRefMATHGoogle Scholar
  19. 19.
    Bell, J.S.: On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 38, 447–452 (1966)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Bell, J.S. (ed.): Bertlmann’s socks and the nature of reality. In: Speakable and Unspeakable in Quantum Mechanics, pp. 139–158. Cambridge University Press, Cambridge (1987)Google Scholar
  21. 21.
    Leifer, M.S.: Is the quantum state real? An extended review of \(\psi \)-ontology theorems. Quanta 3, 67–155 (2014)CrossRefGoogle Scholar
  22. 22.
    Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 475–478 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Physics and AstronomyMonash UniversityMelbourneAustralia

Personalised recommendations