Foundations of Physics

, Volume 47, Issue 8, pp 1060–1064 | Cite as

Sporadic SICs and the Normed Division Algebras



Symmetric informationally complete quantum measurements, or SICs, are mathematically intriguing structures, which in practice have turned out to exhibit even more symmetry than their definition requires. Recently, Zhu classified all the SICs whose symmetry groups act doubly transitively. I show that lattices of integers in the complex numbers, the quaternions and the octonions yield the key parts of these symmetry groups.


Quantum information Quantum measurement SIC-POVM Octonions E8 


  1. 1.
    Zauner, G.: Quantum designs—foundations of a noncommutative theory of designs. PhD thesis, University of Vienna. (1999)
  2. 2.
    Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45(6), 2171 arXiv:quant-ph/0310075 (2004)
  3. 3.
    Scott, A.J., Grassl, M.: SIC-POVMs: a new computer study. J. Math. Phys. 51(4), 042203. arXiv:0910.5784 [quant-ph] (2010)
  4. 4.
    Fuchs, C.A.: QBism: the perimeter of quantum Bayesianism. arXiv:1003.5209 [quant-ph] (2010)
  5. 5.
    Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Modern Phys. 85(4), 1693–1715. arXiv:1301.3274 [quant-ph] (2013)
  6. 6.
    Fuchs, C.A., Stacey, B.C.: Some negative remarks on operational approaches to quantum theory. In: Chiribella, G., Spekkens, R.W. (eds.) Quantum Theory: Informational Foundations and Foils (Springer, 2016), pp. 283–305. arXiv:1401.7254 [quant-ph] (2016)
  7. 7.
    Graydon, M.A., Appleby, D.M.: Quantum conical designs. J. Phys. A 49(8), 085301. arXiv:1507.05323 [quant-ph] (2016)
  8. 8.
    Appleby, D.M., Flammia, S., McConnell, G., Yard, J.: Generating ray class fields of real quadratic fields via complex equiangular lines. arXiv:1604.06098 [math.NT] (2016)
  9. 9.
    Zhu, H.: Quasiprobability representations of quantum mechanics with minimal negativity. Phys. Rev. Lett. 117(12), 120404. arXiv:1604.06974 [quant-ph] (2016)
  10. 10.
    DeBrota, J.B., Fuchs, C.A.: Negativity bounds for Weyl–Heisenberg quasiprobability representations. arXiv:1703.08272 [quant-ph] (2017)
  11. 11.
    Appleby, M., Chien, T.-Y., Flammia, S., Waldron, S.: Constructing exact symmetric informationally complete measurements from numerical solutions. arXiv:1703.05981 [quant-ph] (2017)
  12. 12.
    Scott, A.J.: SICs: extending the list of solutions. arXiv:1703.03993 [quant-ph] (2017)
  13. 13.
    Fuchs, C.A., Hoang, M.C., Stacey, B.C.: The SIC question: history and state of play. arXiv:1703.07901 (2017)
  14. 14.
    Chiribella, G., Spekkens, R.W.: Introduction. In: Chiribella, G., Spekkens, R.W. (eds.) Quantum Theory: Informational Foundations and Foils, pp. 1–18. Springer, Berlin (2016)CrossRefGoogle Scholar
  15. 15.
    D’Ariano, G.M., Jaeger, G., Khrennikov, A., Plotnitsky, A.: Preface of the special issue, quantum theory: advances and problems. Phys. Scr. T163, 010301 (2014)CrossRefGoogle Scholar
  16. 16.
    D’Ariano, G.M., Khrennikov, A.: Preface of the special issue, quantum foundations: information approach. Philos. Trans. R. Soc. A 374, 20150244 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Appleby, M., Fuchs, C.A., Stacey, B.C., Zhu, H.: Introducing the qplex: a novel arena for quantum theory. arXiv:1612.03234 (2016)
  18. 18.
    Fuchs, C.A., Stacey, B.C.: QBism: quantum theory as a hero’s handbook. arXiv:1612.07308 (2016)
  19. 19.
    Zhu, H.: Quantum state estimation and symmetric informationally complete POMs. PhD thesis, National University of Singapore. (2012)
  20. 20.
    Szymusiak, A., Słomczyński, W.: Informational power of the Hoggar symmetric informationally complete positive operator-valued measure. Phys. Rev. A 94(1), 012122. arXiv:1512.01735 [quant-ph] (2016)
  21. 21.
    Stacey, B.C.: SIC-POVMs and compatibility among quantum states. Mathematics 4(2), 36. arXiv:1404.3774 [quant-ph] (2016)
  22. 22.
    Zhu, H.: Super-symmetric informationally complete measurements. Ann. Phys. 362, 311–326. arXiv:1412.1099 [quant-ph] (2015)
  23. 23.
    Baez, J.C.: On quaternions and octonions: their geometry, arithmetic, and symmetry by John H. Conway and Derek A. Smith. Bull. Am. Math. Soc. 42, 229–243. (2005)
  24. 24.
    Wilson, R.A.: The Finite Simple Groups. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Baez, J.C., Egan, G., Silverman, T.: Integral octonions. (2016)
  26. 26.
    \(n\)-Lab contributors. ADE classification. (2015)
  27. 27.
    Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. arXiv:1603.04246 [math.NT] (2016)

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of Massachusetts BostonBostonUSA

Personalised recommendations