Foundations of Physics

, Volume 46, Issue 12, pp 1666–1679 | Cite as

Galilean and Lorentz Transformations in a Space with Generalized Uncertainty Principle

  • V. M. Tkachuk


We consider a space with Generalized Uncertainty Principle (GUP) which can be obtained in the frame of the deformed commutation relations. In the space with GUP we have found transformations relating coordinates and times of moving and rest frames of reference in the first order over the parameter of deformation. In the non-relativistic case we find the deformed Galilean transformation which is rotation in Euclidian space–time. This transformation is similar to the Lorentz one but written for Euclidean space–time where the speed of light is replaced by some velocity related to the parameter of deformation. We show that for relativistic particle in the space with GUP the coordinates of the rest and moving frames of reference satisfy the Lorentz transformation with some effective speed of light.


Generalized Uncertainty Principle Deformed Heisenberg algebra Minimal length Galilean transformation Lorentz transformation 



I am grateful to Dr. T. Masłowski for drawing my attention to review [48].


  1. 1.
    Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407–454 (1988)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Maggiore, M.: A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65–69 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Witten, E.: Reflections on the fate of spacetime. Phys. Today 49, 24–31 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hossenfelder, S.: Minimal length scale scenarios for quantum gravity. Living. Rev. Relativ. 16(2), 1–90 (2013)ADSzbMATHGoogle Scholar
  5. 5.
    Hossenfelder, S.: Can we measure structures to a precision better than the Planck length? Class. Quant. Gravity 29, 115011 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kempf, A.: Noncommutative geometric regularization. Phys. Rev. D 54, 5174–5178 (1996)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Snyder, H.S.: Quantized space–time. Phys. Rev. 71, 38–41 (1947)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Quesne, C., Tkachuk, V.M.: Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework. J. Phys. A 36, 10373–10389 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Quesne, C., Tkachuk, V.M.: More on a SUSYQM approach to the harmonic oscillator with nonzero minimal uncertainties in position and/or momentum. J. Phys. A 37, 10095–10113 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Dadić, I., Jonke, L., Meljanac, S.: Harmonic oscillator with minimal length uncertainty relations and ladder operators. Phys. Rev. D 67, 087701 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Quesne, C., Tkachuk, V.M.: Dirac oscillator with nonzero minimal uncertainty in position. J. Phys. A 38, 1747–1765 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Menculini, L., Panella, O., Roy, P.: Quantum phase transitions of the Dirac oscillator in a minimal length scenario. Phys. Rev. D 91, 045032 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Quesne, C., Tkachuk, V.M.: Lorentz-covariant deformed algebra with minimal length and application to the (1 + 1)-dimensional Dirac oscillator. J. Phys. A 39, 10909–10922 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fityo, T.V., Vakarchuk, I.O., Tkachuk, V.M.: One-dimensional Coulomb-like problem in deformed space with minimal length. J. Phys. A 39, 2143–2149 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bouaziz, D., Bawin, M.: Regularization of the singular inverse square potential in quantum mechanics with a minimal length. Phys. Rev. A 76, 032112 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Bouaziz, D., Bawin, M.: Singular inverse square potential in arbitrary dimensions with a minimal length: application to the motion of a dipole in a cosmic string background. Phys. Rev. A 78, 032110 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Menculini, L., Panella, O., Roy, P.: Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length. Phys. Rev. D 87, 065017 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Pedram, P., Amirfakhrian, M., Shababi, H.: On the (2 + 1)-dimensional Dirac equation in a constant magnetic field with a minimal length uncertainty. Int. J. Mod. Phys. D 24, 1550016 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Brau, F.: Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691–7696 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Benczik, S., Chang, L.N., Minic, D., Takeuchi, T.: Hydrogen-atom spectrum under a minimal-length hypothesis. Phys. Rev. A 72, 012104 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Stetsko, M.M., Tkachuk, V.M.: Perturbation hydrogen-atom spectrum in deformed space with minimal length. Phys. Rev. A 74, 012101 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Stetsko, M.M.: Corrections to the ns levels of the hydrogen atom in deformed space with minimal length. Phys. Rev. A 74, 062105 (2006) [Erratum: Phys. Rev. A 78, 029907(E) (2008)]Google Scholar
  25. 25.
    Stetsko, M.M., Tkachuk, V.M.: Orbital magnetic moment of the electron in the hydrogen atom in a deformed space with minimal length. Phys. Lett. A 372, 5126–5130 (2008)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Stetsko, M.M., Tkachuk, V.M.: Scattering problem in deformed space with minimal length. Phys. Rev. A 76, 012707 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Brau, F., Buisseret, F.: Minimal length uncertainty relation and gravitational quantum well. Phys. Rev. D 74, 036002 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Nozari, K., Pedram, P.: Minimal length and bouncing-particle spectrum. Europhys. Lett. 92, 50013 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Pedram, P., Nozari, K., Taheri, S.H.: The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field. J. High Energy Phys. 1103, 093 (2011)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Ali, A.F., Das, S., Vagenas, E.C.: Proposal for testing quantum gravity in the lab. Phys. Rev. D 84, 044013 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Frassino, A.M., Panella, O.: Casimir effect in minimal length theories based on a generalized uncertainty principle. Phys. Rev. D 85, 045030 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Falek, M., Merad, M., Moumni, M.: Klein paradox for the bosonic equation in the presence of minimal length. Found. Phys. 45, 507–524 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Vakili, B.: Dilaton cosmology, noncommutativity, and generalized uncertainty principle. Phys. Rev. D 77, 044023 (2008)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Battisti, M.V., Meljanac, S.: Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry. Phys. Rev. D 79, 067505 (2009)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Kober, M.: Gauge theories under incorporation of a generalized uncertainty principle. Phys. Rev. D 82, 085017 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Bojowald, M., Kempf, A.: Generalized uncertainty principles and localization of a particle in discrete space. Phys. Rev. D 86, 085017 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Sailer, K., Péli, Z., Nagy, S.: Some consequences of the generalized uncertainty principle induced ultraviolet wave-vector cutoff in one-dimensional quantum mechanics. Phys. Rev. D 87, 084056 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Benczik, S., Chang, L.N., Minic, D., Okamura, N., Rayyan, S., Takeuchi, T.: Short distance versus long distance physics: the classical limit of the minimal length uncertainty relation. Phys. Rev. D 66, 026003 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    Frydryszak, A.M., Tkachuk, V.M.: Aspects of pre-quantum description of deformed theories. Czechoslov. J. Phys. 53, 1035–1040 (2003)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Silagadze, Z.K.: Quantum gravity, minimum length and Keplerian orbits. Phys. Lett. A 373, 2643–2645 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Quesne, C., Tkachuk, V.M.: Composite system in deformed space with minimal length. Phys. Rev. A 81, 012106 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Buisseret, F.: Quantum N-body problem with a minimal length. Phys. Rev. A 82, 062102 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Marin, F., Marino, F., Bonaldi, M., et al.: Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nat. Phys. 9, 71–73 (2013)CrossRefGoogle Scholar
  45. 45.
    Pikovski, I., Vanner, M.R., Aspelmeyer, M., et al.: Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393–397 (2012)CrossRefGoogle Scholar
  46. 46.
    Ali, A.F.: Minimal length in quantum gravity, equivalence principle and holographic entropy bound class. Quant. Gravity 28, 065013 (2011)ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    Tkachuk, V.M.: Deformed Heisenberg algebra with minimal length and the equivalence principle. Phys. Rev. A 86, 062112 (2012)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Ehlers, J., Lämmerzahl, C. (eds): Special Relativity. Lecture of Notes in Physics, vol. 702. Springer, Berlin (2006)Google Scholar
  49. 49.
    Gnatenko, Kh.P.: Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377, 3061–3066 (2013)Google Scholar
  50. 50.
    Gnatenko, Kh.P., Tkachuk, V.M.: Effect of coordinate noncommutativity on the mass of a particle in a uniform field and the equivalence principle. Mod. Phys. Lett. A 31, 1650026 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department for Theoretical PhysicsIvan Franko National University of LvivLvivUkraine

Personalised recommendations