Advertisement

Foundations of Physics

, Volume 46, Issue 11, pp 1522–1550 | Cite as

Energy-Time Uncertainty Relations in Quantum Measurements

  • Takayuki MiyaderaEmail author
Article

Abstract

Quantum measurement is a physical process. A system and an apparatus interact for a certain time period (measurement time), and during this interaction, information about an observable is transferred from the system to the apparatus. In this study, we quantify the energy fluctuation of the quantum apparatus required for this physical process to occur autonomously. We first examine the so-called standard model of measurement, which is free from any non-trivial energy–time uncertainty relation, to find that it needs an external system that switches on the interaction between the system and the apparatus. In such a sense this model is not closed. Therefore to treat a measurement process in a fully quantum manner we need to consider a “larger” quantum apparatus which works also as a timing device switching on the interaction. In this setting we prove that a trade-off relation (energy–time uncertainty relation), \(\tau \cdot \Delta H_A \ge \frac{\pi \hbar }{4}\), holds between the energy fluctuation \(\Delta H_A\) of the quantum apparatus and the measurement time \(\tau \). We use this trade-off relation to discuss the spacetime uncertainty relation concerning the operational meaning of the microscopic structure of spacetime. In addition, we derive another trade-off inequality between the measurement time and the strength of interaction between the system and the apparatus.

Keywords

Foundations of quantum physics Quantum measurements Energy–time uncertainty relations Quantum information 

Notes

Acknowledgments

I am grateful to anonymous referees for valuable comments, and to Leon Loveridge for many helpful remarks. This work was supported by KAKENHI Grant Number 15K04998.

References

  1. 1.
    Wheeler, J.A., Zurek, W.: Quantum Theory and Measurement. Princeton University Press, Princeton (1984)Google Scholar
  2. 2.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)zbMATHGoogle Scholar
  3. 3.
    Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1996)zbMATHGoogle Scholar
  4. 4.
    Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer, Berlin (1995)zbMATHGoogle Scholar
  5. 5.
    Heinosaari, T., Ziman, M.: The Mathematical Language of Quantum Theory. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  6. 6.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ozawa, M.: Quantum state reduction: an operational approach. Fortschr. Phys. 46, 615–625 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Busch, P.: On the energy-time uncertainty relation. Part II. Found. Phys. 20, 33–43 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    Busch, P.: The time-energy uncertainty relation. In: Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.) Time in Quantum Mechanics, 2nd edn, pp. 73–105. Springer, Berlin (2008)Google Scholar
  12. 12.
    Hegerfeldt, G.C.: Causality problems for Fermi’s two-atom system. Phys. Rev. Lett. 72, 596–599 (1994)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Ahlfors, L.: Complex Analysis. McGraw-Hill, New York (1979)zbMATHGoogle Scholar
  14. 14.
    Haag, R.: Local Quantum Physics. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  15. 15.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Mandelstam, L., Tamm, I.G.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. USSR 9, 249–254 (1945)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Busch, P.: On the energy-time uncertainty relation. Part I. Found. Phys. 20, 1–32 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365–3368 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Janssens, B., Maassen, H.: Information transfer implies state collapse. J. Phys. A: Math. Gen. 39, 9845–9860 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Uffink, J.: The rate of evolution of a quantum state. Am. J. Phys. 61, 935–936 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Miyadera, T., Imai, H.: Heisenberg’s uncertainty principle for simultaneous measurement of positive-operator-valued measures. Phys. Rev. A 78, 052119-1–052119-5 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Miyadera, T.: Uncertainty relations for joint localizability and joint measurability in finite-dimensional systems. J. Math. Phys. 52, 072105-1–072105-11 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Heinosaari, T., Miyadera, T.: Qualitative noise-disturbance relation for quantum measurements. Phys. Rev. A 88, 042117-1–042117-7 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Miyadera, T.: Relation between strength of interaction and accuracy of measurement for a quantum measurement. Phys. Rev. A 83, 052119-1–052119-5 (2011)ADSGoogle Scholar
  25. 25.
    Mead, C.A.: Possible connection between gravitation and fundamental length. Phys. Rev. 135, B849–B862 (1964)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yoneya, T.: String theory and the space-time uncertainty principle. Prog. Theor. Phys. 103, 1081–1125 (2000)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics 1 & 2. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  29. 29.
    Nachtergaele, B., Sims, R.: Locality estimates for quantum spin systems. New Trends in Mathematical Physics, pp. 591–614. Springer, Berlin (2009)CrossRefGoogle Scholar
  30. 30.
    Rastegin, A.E.: Upper bound on the global fidelity for mixed-state cloning. Phys. Rev. A 67, 012305-1–012305-3 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Peres, A.: Measurement of time by quantum clocks. Am. J. Phys. 42, 552–557 (1980)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Buzek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82, 2207–2210 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Bisio, A., Chiribella, G., D’ariano, G.M., Facchini, S., Perinotti, P.: Optimal quantum learning of a unitary transformation. Phys. Rev. A 81, 032324-1–032324-6 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885–2892 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    Milburn, G.J., Poulin, D.: Relational time for systems of oscillators. Int. J. Quantum Inf. 04, 151–159 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum time. Phys. Rev. D 92, 045033-1–045033-9 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Miyadera, T., Loveridge, L., Busch, P.: Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off. J. Phys. A: Math. Theor. 49, 185301-1–185301-17 (2016)Google Scholar
  39. 39.
    Loveridge, L., Busch, P., Miyadera, T.: Symmetry and the relativity of states and observables in quantum mechanics. arXiv:1604.02836

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringKyoto UniversityKyotoJapan

Personalised recommendations