Foundations of Physics

, Volume 46, Issue 4, pp 473–483 | Cite as

Quaternionic Particle in a Relativistic Box

  • Sergio Giardino


This study examines quaternion Dirac solutions for an infinite square well. The quaternion result does not recover the complex result within a particular limit. This raises the possibility that quaternionic quantum mechanics may not be understood as a correction to complex quantum mechanics, but it may also be a structure that can be used to study phenomena that cannot be described through the framework of complex quantum mechanics.


Quantum mechanics Dirac equation Quaternions  Confined solutions 



Sergio Giardino receives a financial grant from the CNPq for his research, and is grateful for the hospitality of Professor Paulo Vargas Moniz and the Centre for Mathematics and Applications at University of Beira Interior.


  1. 1.
    De Leo, S., Giardino, S.: Dirac solutions for quaternionic potentials. J. Math. Phys. 55, 022301 (2014). arXiv:1311.6673[math-ph]
  2. 2.
    De Leo, S., Ducati, G., Giardino, S.: Quaternioninc Dirac scattering. J. Phys. Math. 6(1), 21000130–21000136 (2015)Google Scholar
  3. 3.
    Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  4. 4.
    Davies, A.J.: Quaternionic Dirac equation. Phys. Rev. D 41, 2628–2630 (1990)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Alberto, P., Fiolhais, C., Gil, V.M.S.: Relativistic particle in a box. Eur. J. Phys. 17, 19–24 (1996)CrossRefGoogle Scholar
  6. 6.
    Alberto, P., Das, S., Vagenas, E.C.: Relativistic particle in a three-dimensional box. Phys. Lett. A375, 1436–1440 (2011). arXiv:1102.3192[quant-ph]
  7. 7.
    Alhaidari, A.D.: Dirac particle in a square well and in a box. AIP Conf. Proc. 1370, 21–25 (2011). arXiv:0908.2205[quant-ph]
  8. 8.
    Greiner, W.: Relativistic Quantum Mechanics: Wave Equations. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  9. 9.
    De Vincenzo, S., Alonso, V.: General boundary conditions for a Dirac particle in a box and their non-relativistic limits. J. Phys. A 30, 85738585 (1997)Google Scholar
  10. 10.
    De Vincenzo, S., Alonso, V.: Some remarks about the free Dirac particle in a one-dimensional box. J. Phys. A 32, 52775284 (1999)Google Scholar
  11. 11.
    Menon, G., Belyi, S.: Dirac particle in a box, and relativistic quantum Zeno dynamics. Phys. Lett. A 330, 33–40 (2004)CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Coutinho, F.A.B., Nogami, Y., Toyama, F.M.: General aspects of the boundstate solutions of the onedimensional Dirac equation. Am. J. Phys. 56, 904 (1988)CrossRefADSGoogle Scholar
  13. 13.
    Nogami, Y., Toyama, F.M., van Dijk, W.: The Dirac equation with a confining potential. Am. J. Phys. 71, 950 (2003)CrossRefADSGoogle Scholar
  14. 14.
    de Castro, A.S., Pereira, W.G.: Confinement of neutral fermions by a pseudoscalar double step potential in \((1+1)-\)dimensions. Phys. Lett. A 308, 131–134 (2003). arXiv:hep-th/0301053
  15. 15.
    De Leo, S., Ducati, G., Nishi, C.: Quaternionic potentials in non-relativistic quantum mechanics. J. Phys. A 35, 5411–5426 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    De Leo, S., Ducati, G.: Quaternionic bound states. J. Phys. A 38, 3443–3454 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: A new extended model of hadrons. Phys. Rev. D 9, 3471–3495 (1974)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B.: Baryon structure in the bag theory. Phys. Rev. D 10, 2599 (1974)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Thomas, A.W.: Chiral symmetry and the bag model: a new starting point for nuclear physics. Adv. Nucl. Phys. 13, 1–137 (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de Física & Centro de Matemática e AplicaçõesUniversidade da Beira InteriorCovilhãPortugal

Personalised recommendations