Foundations of Physics

, Volume 46, Issue 4, pp 458–472 | Cite as

No-Go Theorems Face Background-Based Theories for Quantum Mechanics

Article

Abstract

Recent experiments have shown that certain fluid-mechanical systems, namely oil droplets bouncing on oil films, can mimic a wide range of quantum phenomena, including double-slit interference, quantization of angular momentum and Zeeman splitting. Here I investigate what can be learned from these systems concerning no-go theorems as those of Bell and Kochen-Specker. In particular, a model for the Bell experiment is proposed that includes variables describing a ‘background’ field or medium. This field mimics the surface wave that accompanies the droplets in the fluid-mechanical experiments. It appears that quite generally such a model can violate the Bell inequality and reproduce the quantum statistics, even if it is based on local dynamics only. The reason is that measurement independence is not valid in such models. This opens the door for local ‘background-based’ theories, describing the interaction of particles and analyzers with a background field, to complete quantum mechanics. Experiments to test these ideas are also proposed.

Keywords

Bell’s theorem Fluid mechanics Hidden-variable theories Sub-quantum theories Nonlocality Measurement independence Background-based theories 

References

  1. 1.
    Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437(7056), 208–208 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97(15), 154101 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M., Couder, Y.: Information stored in faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433 (2011)CrossRefADSMathSciNetMATHGoogle Scholar
  4. 4.
    Eddi, A., Moukhtar, J., Perrard, S., Fort, E., Couder, Y.: Level-splitting at a macroscopic scale. Phys. Rev. Lett. 108, 264503 (2012)CrossRefADSGoogle Scholar
  5. 5.
    Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40(3–4), 322–326 (1927)CrossRefADSGoogle Scholar
  6. 6.
    Wilhelm, H.: Hydrodynamic model of quantum mechanics. Phys. Rev. D 1, 2278 (1970)CrossRefADSMATHGoogle Scholar
  7. 7.
    Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208 (1954)CrossRefADSMathSciNetMATHGoogle Scholar
  8. 8.
    Sanz, A.S., et al.: Particle diffraction studied using quantum trajectories. J. Phys. 14, 6109 (2002)Google Scholar
  9. 9.
    Wyatt, R.E.: Wave packet dynamics on adaptive moving grids. J. Chem. Phys. 117, 9569 (2002)CrossRefADSGoogle Scholar
  10. 10.
    Bell, J.S.: On the Einstein-Podolsky-Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  11. 11.
    Bell J.S.: Bertlmann’s socks and the nature of reality. J. de Phys. 42, Complément C2, C2-41–C2-62 (1981)Google Scholar
  12. 12.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MathSciNetMATHGoogle Scholar
  13. 13.
    Hall, M.J.W.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Hall, M.J.W.: Relaxed Bell inequalities and Kochen-Specker theorems. Phys. Rev. A 84, 022102 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Vervoort, L.: Bell’s Theorem: two neglected solutions. Found. Phys. 43, 769–791 (2013)CrossRefADSMathSciNetMATHGoogle Scholar
  16. 16.
    Khrennikov, A.: Interpretations of Probability. de Gruyter, Berlin (2008)Google Scholar
  17. 17.
    Weinstein, S.: Nonlocality without nonlocality. Found. Phys. 39, 921 (2009)CrossRefADSMathSciNetMATHGoogle Scholar
  18. 18.
    Hooft, G.‘t: Models on the boundary between classical and quantum mechanics. Phil. Trans. R. Soc. A 373, 20140236 (2015)CrossRefADSGoogle Scholar
  19. 19.
    Hooft, G.‘t: arXiv:1405.1548, preprint [quant-ph] (2014)
  20. 20.
    Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  21. 21.
    Clauser, J., Horne, M.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)CrossRefADSGoogle Scholar
  22. 22.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49(25), 1804–1807 (1982)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Weihs, G., et al.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)CrossRefADSMathSciNetMATHGoogle Scholar
  24. 24.
    Salart, D., et al.: Space-like separation in a Bell test assuming gravitationally induced collapses. Phys. Rev. Lett. 100, 220404 (2008)CrossRefADSGoogle Scholar
  25. 25.
    Banik, M., et al.: Optimal free will on one side in reproducing the singlet correlation. J. Phys. A 45, 205301 (2012)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Brady, R., Anderson, R.: arXiv preprint arXiv:1305.6822 (2013)
  27. 27.
    Sbitnev, V.: arXiv preprint arXiv:1403.3900 (2014)
  28. 28.
    Brady, R., Anderson, R.: arXiv preprint arXiv:1401.4356 (2014)
  29. 29.
    Khrennikov, A.: Prequantum classical statistical field theory: background field as a source of everything? J. Phys. 306, 012021 (2011)Google Scholar
  30. 30.
    Grössing, G., et al.: An explanation of interference effects in the double slit experiment: classical trajectories plus ballistic diffusion caused by zero-point fluctuations. Ann. Phys. 327, 421 (2012)CrossRefADSMATHGoogle Scholar
  31. 31.
    Bacciagaluppi, G.: Nelsonian mechanics revisited. Found. Phys. Lett. 12, 1–16 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut National de Recherche Scientifique (INRS), and Minkowski InstituteMontrealCanada

Personalised recommendations