Foundations of Physics

, Volume 45, Issue 12, pp 1586–1598 | Cite as

A Fundamental Form of the Schrodinger Equation

  • Muhammad Adeel AjaibEmail author


We propose a first order equation from which the Schrodinger equation can be derived. Matrices that obey certain properties are introduced for this purpose. We start by constructing the solutions of this equation in one dimension and solve the problem of electron scattering from a step potential. We show that the sum of the spin up and down, reflection and transmission coefficients, is equal to the quantum mechanical results for this problem. Furthermore, we present a three dimensional (3D) version of the equation which can be used to derive the Schrodinger equation in 3D.


Quantum mechanics Schrodinger equation Step potential problem Scattering problems 


  1. 1.
    Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Klein, O.: Die Reflexion von Elektronen an Einem Potentialsprung Nach der Relativistischen Dynamik von Dirac. Z. Phys. 53, 157 (1929)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    Hansen, A., Ravndal, F.: Klein’s paradox and its resolution. Phys. Scr. 23, 1036 (1981)CrossRefADSGoogle Scholar
  4. 4.
    Holestein, B.R.: Klein’s paradox. Am. J. Phys. 66, 507 (1998)CrossRefADSGoogle Scholar
  5. 5.
    Dombey, N., Calogeracos, A.: Seventy years of the Klein paradox. Phys. Rep. 315, 41–58 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Alhaidari, A.D.: Resolution of the Klein paradox. Phys. Scr. 83, 025001 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUrsinus CollegeCollegevilleUSA

Personalised recommendations