# Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

- 588 Downloads
- 22 Citations

## Abstract

We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from “traditional quantum biophysics”. The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D’ Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

## Keywords

Quantum biological information Quantum adaptive dynamics Open quantum systems Information interpretation QBism Molecular biology Genetics Cognition## References

- 1.Asano, M., Ohya, M., Khrennikov, A.: Quantum-like model for decision making process in two players game. Found. Phys.
**41**, 538–548 (2010)MathSciNetCrossRefADSGoogle Scholar - 2.Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: On application of Gorini–Kossakowski–Sudarshan–Lindblad equation in cognitive psychology. Open Syst. Inf. Dyn.
**17**, 1–15 (2010)MathSciNetCrossRefGoogle Scholar - 3.Basieva, I., Khrennikov, A., Ohya, M., Yamato, I.: Quantum-like interference effect in gene expression glucose-lactose destructive interference. Syst. Synth. Biol.
**5**, 1–10 (2010)Google Scholar - 4.Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: Dynamics of entropy in quantum-like model of decision making. J. Theor. Biol.
**281**, 56–64 (2011)MathSciNetCrossRefGoogle Scholar - 5.Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Yamato, I.: Non-Kolmogorovian approach to the context-dependent systems breaking the classical probability law. Found. Phys.
**43**, 895–911 (2013). 2083–2099 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar - 6.Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y.: Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties. J. Math. Psychol.
**166–175**, 56 (2012)MathSciNetGoogle Scholar - 7.Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum-like model for the adaptive dynamics of the genetic regulation of
*E. coli*’s metabolism of glucose/lactose. Syst. Synth. Biol.**6**, 1–7 (2012)CrossRefGoogle Scholar - 8.Asano, M., Basieva, I.I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: A model of epigenetic evolution based on theory of open quantum systems. Syst. Synth. Biol.
**7**, 161–173 (2013)CrossRefGoogle Scholar - 9.Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Violation of contextual generalization of the LeggettGarg inequality for recognition of ambiguous figures. Phys. Scr. T
**163**, 014006 (2014)CrossRefADSGoogle Scholar - 10.Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum Adaptivity in Biology: from Genetics to Cognition. Springer, Heidelberg (2015)Google Scholar
- 11.Arndt, M., Juffmann, T.H., Vedral, V.: Quantum physics meets biology. HFSP J
**3**(6), 386400 (2009)CrossRefGoogle Scholar - 12.Khrennikov, A.: On quantum-like probabilistic structure of mental information. Open Syst. Inf. Dyn.
**11**(3), 267–275 (2004)zbMATHMathSciNetCrossRefGoogle Scholar - 13.Khrennikov, A.: Quantum-like brain: interference of minds. BioSystems
**84**, 225–241 (2006)CrossRefGoogle Scholar - 14.Khrennikov, A.: Ubiquitous Quantum Structure: from Psychology to Finance. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 15.Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A., Zbilut, J.P.: Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Chaos Solitons Fractals
**31**, 1076–1088 (2006)CrossRefADSGoogle Scholar - 16.Conte, E., Khrennikov, A., Todarello, O., Federici, A., Mendolicchio, L., Zbilut, J.P.: A preliminary experimental verification on the possibility of Bell inequality violation in mental states. Neuroquantology
**6**, 214–221 (2008)Google Scholar - 17.Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge Press, Cambridge (2012)CrossRefGoogle Scholar
- 18.Busemeyer, J.B., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. J. Math. Psychol.
**50**, 220–241 (2006)zbMATHMathSciNetCrossRefGoogle Scholar - 19.Dzhafarov, E.N., Kujala, J.V.: Selectivity in probabilistic causality: where psychology runs into quantum physics. J. Math. Psychol.
**56**, 54–63 (2012)zbMATHMathSciNetCrossRefGoogle Scholar - 20.Acacio de Barros, J., Suppes, P.: Quantum mechanics, interference, and the brain. J. Math. Psychcol.
**53**, 306–313 (2009)zbMATHMathSciNetCrossRefGoogle Scholar - 21.Acacio de Barros, J.: Quantum-like model of behavioral response computation using neural oscillators. Biosystems
**110**, 171–182 (2012)CrossRefGoogle Scholar - 22.Acacio de Barros, J.: 2012 Joint probabilities and quantum cognition. In: A. Khrennikov, H. Atmanspacher, A. Migdall and S. Polyakov. (eds.) Quantum Theory: Reconsiderations of Foundations 6. Special Section: Quantum-Like Decision Making: from Biology to Behavioral Economics, AIP Conference Proceedings 1508, pp. 98–104Google Scholar
- 23.Atmanspacher, H., Filk, T., Römer, H.: Complementarity in Bistable Perception, Recasting Reality, pp. 135–150. Springer, Berlin (2009)CrossRefGoogle Scholar
- 24.Atmanspacher, H., Filk, Th.: 2012 Temporal nonlocality in bistable perception. In: A. Khrennikov, H. Atmanspacher, A. Migdall and S. Polyakov. (eds.) Quantum Theory: Reconsiderations of Foundations—6, Special Section: Quantum-like decision making: from biology to behavioral economics, AIP Conference Proeeding. 1508, pp. 79–88Google Scholar
- 25.Busemeyer, J.R., Pothos, E.M., Franco, R., Trueblood, J.: A quantum theoretical explanation for probability judgment errors. Psychol. Rev.
**118**, 193–218 (2011)CrossRefGoogle Scholar - 26.Cheon, T., Takahashi, T.: Interference and inequality in quantum decision theory. Phys. Lett. A
**375**, 100–104 (2010)zbMATHMathSciNetCrossRefADSGoogle Scholar - 27.Cheon, T., Tsutsui, I.: Classical and quantum contents of solvable game theory on Hilbert space. Phys. Lett. A
**348**, 147–152 (2006)zbMATHCrossRefADSGoogle Scholar - 28.Fichtner, K.H., Fichtner, L., Freudenberg, W., Ohya, M.: On a quantum model of the recognition process. QP-PQ Quantum Prob. White Noise Anal.
**21**, 64–84 (2008)MathSciNetCrossRefGoogle Scholar - 29.Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge Press, Cambridge (2012)Google Scholar
- 30.Khrennikova, P., Haven, E., Khrennikov, A.: An application of the theory of open quantum systems to model the dynamics of party governance in the US political system. Int. J. Theor. Phys.
**53**, 1346–1360 (2014)MathSciNetCrossRefGoogle Scholar - 31.Khrennikova, P.: Evolution of quantum-like modeling in decision making processes. AIP Conf. Proc.
**1508**, 108–112 (2012)CrossRefADSGoogle Scholar - 32.Ohya, M., Volovich, I.: Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems. Springer, Heidelberg (2011)zbMATHCrossRefGoogle Scholar
- 33.Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E
**61**(4), 41944206 (2000)CrossRefGoogle Scholar - 34.Penrose, R.: The Emperor’s New Mind. Oxford University Press, New York (1989)Google Scholar
- 35.Hameroff, S.: Quantum coherence in microtubules. A neural basis for emergent consciousness? J. Cons. Stud.
**1**, 91–118 (1994)Google Scholar - 36.Khrennikov, A.: Quantum-like model of processing of information in the brain based on classical electromagnetic field. Biosystems
**105**(3), 250–262 (2011)CrossRefGoogle Scholar - 37.Plotnitsky, A.: Reading Bohr: Physics and Philosophy. Springer, Heidelberg (2006)Google Scholar
- 38.Plotnitsky, A.: Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking. Springer, Heidelberg (2009)Google Scholar
- 39.Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification phys. Rev. A
**81**, 062348 (2010)CrossRefGoogle Scholar - 40.D’ Ariano, G.M.: Operational axioms for quantum mechanics, in Adenier et al., Foundations of Probability and Physics-3.AIP Conference Proceeding vol. 889, pp. 79–105 (2007)Google Scholar
- 41.Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational axioms for quantum theory in Foundations of Probability and Physics—6. AIP Conference Proceeding vol. 1424, p. 270 (2012)Google Scholar
- 42.D’Ariano, G.M.: Physics as Information Processing, in Advances in Quantum Theory, AIP Conference Proceeding 1327 7 (2011); arXiv:1012.0535
- 43.Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys.
**29**(4), 631–643 (1999)MathSciNetCrossRefGoogle Scholar - 44.Zeilinger, A.: Dance of the Photons: from Einstein to Quantum Teleportation. Farrar, Straus and Giroux, New York (2010)Google Scholar
- 45.Brukner, C., Zeilinger, A.: Malus’ law and quantum information. Acta Phys. Slovava
**49**(4), 647–652 (1999)Google Scholar - 46.Brukner, C., Zeilinger, A.: Operationally invariant information in quantum mechanics. Phys. Rev. Lett.
**83**(17), 3354–3357 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar - 47.Brukner, C., Zeilinger, A.: Information invariance and quantum probabilities. Found. Phys.
**39**, 677 (2009)zbMATHMathSciNetCrossRefADSGoogle Scholar - 48.Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A
**65**, 022305 (2002)MathSciNetCrossRefADSGoogle Scholar - 49.Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). In: Khrennikov, A. (ed.), Quantum Theory: Reconsideration of Foundations, Ser. Math. Modeling 2, Växjö University Press, Växjö, pp. 463–543 (2002)Google Scholar
- 50.Fuchs, C. A.: The anti-Växjö interpretation of quantum mechanics. Quantum Theory: Reconsideration of Foundations, pp. 99–116. Ser. Math. Model. 2, Växjö University Press, Växjö (2002)Google Scholar
- 51.Fuchs, ChA, Schack, R.: A quantum-Bayesian route to quantum-state space. Found. Phys.
**41**, 345–356 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar - 52.E. Schrdinger, Die gegenwrtige Situation in der Quantenmechanik. Naturwissenschaften 23,807–812; 823–828; 844–849 (1935)Google Scholar
- 53.Fuchs, Ch.A.: QBism, the perimeter of quantum Bayesianism. arXiv:1003.5209
- 54.Von Neuman, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)Google Scholar
- 55.’t Hooft, G.: The free-will postulate in quantum mechanics. Herald of Russian Academy of Science vol. 81, pp. 907–911 (2011); ArXiv: arXiv:quant-ph/0701097v1 (2007)
- 56.’t Hooft, G.: Quantum gravity as a dissipative deterministic system. ArXiv: arXiv:gr-qc/9903084 (1999)
- 57.’t Hooft, G.: The mathematical basis for deterministic quantum mechanics. ArXiv: arXiv:quant-ph/0604008 (2006)
- 58.Kolmogoroff, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer Verlag); English translation: Kolmogorov A N 1956 Foundations of Theory of Probability. Chelsea Publishing Company, New York (1933)Google Scholar
- 59.Khrennikov, A.: Interpretations of Probability, 2nd edn. De Gruyter, Berlin (2010)Google Scholar
- 60.Khrennikov A, Introduction to foundations of probability and randomness (for students in physics). Lectures given at the Institute of Quantum Optics and Quantum Information, Austrian Academy of Science, Lecture-1: Kolmogorov and von Mises. arXiv:1410.5773 [quant-ph]
- 61.Khrennikov, A.: Fundamental Theories of Physics. Information dynamics in cognitive, psychological, social, and anomalous phenomena. Kluwer, Dordreht (2004)Google Scholar
- 62.Khrennikov, A.: Modelling of psychological behavior on the basis of ultrametric mental space: encoding of categories by balls. P-Adic Numbers Ultrametric Anal. Appl.
**2**(1), 1–20 (2010)zbMATHMathSciNetCrossRefGoogle Scholar - 63.Khrennikov, A., Basieva, I., Dzhafarov, E.N., Busemeyer, J.R.: Quantum models for psychological measurements : an unsolved problem. PLoS One. 9. Article ID: e110909 (2014)Google Scholar
- 64.Acacio de Barros, J.: Beyond the quantum formalism: consequences of a neural-oscillator model to quantum cognition. Advances in Cognitive Neurodynamics (IV). pp. 401–404. Springer, Netherlands (2015)Google Scholar
- 65.Acacio de Barros, J.: Decision making for inconsistent expert judgments using negative probabilities. In Quantum Interaction, pp. 257–269. Springer, Berlin-Heidelberg, (2014)Google Scholar
- 66.Khrennikov, A.: Bell-boole inequality: nonlocality or probabilistic incompatibility of random variables? Entropy
**10**, 19–32 (2008)zbMATHMathSciNetCrossRefADSGoogle Scholar - 67.Hasegawa, Y., Loidl, R., Badurek, G., Filipp, S., Klepp, J., Rauch, H.: Quantum contextuality induced by spin-path entanglement in single-neutrons. Acata Phys. Hung. A Heavy Ion Phys.
**26**(1–2), 157–164 (2006)Google Scholar - 68.Weihs, G., Jennewein, T., Simon, C., Weinfurter, R., Zeilinger, A.: Phys. Rev. Lett. 81, pp. 5039–5043 (1998)Google Scholar
- 69.Giustina, M., Mech, A.l., Ramelow, S., Wittmann, B., Kofler, J., Beyer, J., Lita, A., Calkins, B., Gerrits, Th., Woo Nam, S., Ursin, R., Zeilinger, A.: Nature 497, pp. 227–230 (2013)Google Scholar
- 70.Christensen, B.G., McCusker, K.T., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., Miller, A., Shalm, L.K., Zhang, Y., Nam, S.W., Brunner, N., Lim, C.C.W., Gisin, N., Kwiat, P.G.: Phys. Rev. Lett. 111, pp. 1304–1306 (2013)Google Scholar
- 71.Khrennikov, Y.A., Volovich, I.V.: Local Realism, Contextualism and Loopholes in Bell‘s Experiments. Proc. Conf. Foundations of Probability and Physics-2, Ser. Math. Modelling in Phys., Eng., and Cogn. Sc., 5, pp. 325–344, Växjö University Press, 2002Google Scholar
- 72.Dragovich, B., Khrennikov, A., Kozyrev, S.V., Volovich, I.V.: On p-adic mathematical physics P-Adic Numbers, Ultrametric Analysis, and Applications, 1, N 1, pp. 1–17 (2009); arXiv:org/pdf/0904.4205.pdf
- 73.Acacio de Barros, J., Oas, G.: Negative probabilities and counter-factual reasoning in quantum cognition. Phys. Scr.
**T163**, 014008 (2014)CrossRefADSGoogle Scholar