Advertisement

Foundations of Physics

, Volume 46, Issue 3, pp 263–268 | Cite as

Spontaneously Emitted X-rays: An Experimental Signature of the Dynamical Reduction Models

  • C. Curceanu
  • S. Bartalucci
  • A. Bassi
  • M. Bazzi
  • S. Bertolucci
  • C. Berucci
  • A. M. Bragadireanu
  • M. Cargnelli
  • A. Clozza
  • L. De Paolis
  • S. Di Matteo
  • S. Donadi
  • A. D’Uffizi
  • J.-P. Egger
  • C. Guaraldo
  • M. Iliescu
  • T. Ishiwatari
  • M. Laubenstein
  • J. Marton
  • E. Milotti
  • A. Pichler
  • D. Pietreanu
  • K. Piscicchia
  • T. Ponta
  • E. Sbardella
  • A. Scordo
  • H. Shi
  • D. L. Sirghi
  • F. Sirghi
  • L. Sperandio
  • O. Vazquez Doce
  • J. Zmeskal
Article

Abstract

We present the idea of searching for X-rays as a signature of the mechanism inducing the spontaneous collapse of the wave function. Such a signal is predicted by the continuous spontaneous localization theories, which are solving the “measurement problem” by modifying the Schrödinger equation. We will show some encouraging preliminary results and discuss future plans and strategy.

Keywords

Collapse models Dynamical reduction models X-rays 

Notes

Acknowledgments

We acknowledge the support from the: HadronPhysics FP6(506078), HadronPhysics2 FP7 (227431), HadronPhysics3 (283286) projects, EU COST Action MP1006, Fundamental Problems in Quantum Physics, Austrian Science Foundation (FWF) which supports the VIP2 project with the Grant P25529-N20 and Centro Fermi (“Problemi aperti nella meccania quantistica” project).

References

  1. 1.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Ghirardi, G.C., Rimini, A., Weber, T.: Disentanglement of quantum wave functions: answer to comment on unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 36, 3287 (1987)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Ghirardi, G.C., Rimini, A., Weber, T.: The puzzling entanglement of Schrödinger’s wave function. Found. Phys. 18, 1 (1988)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. 39, 2277 (1989)CrossRefADSGoogle Scholar
  5. 5.
    Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78 (1990)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Bahrami, M., et al.: Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules. Sci. Rep. 3, 1952 (2013)CrossRefADSGoogle Scholar
  7. 7.
    Fu, Q.: Spontaneous radiation of free electrons in a nonrelativistic collapse model. Phys. Rev. A 56, 1806 (1997)CrossRefADSGoogle Scholar
  8. 8.
    Miley, H.S., et al.: Suggestive evidence for the two-neutrino double-\(\beta \) decay of Ge 76. Phys. Rev. Lett. 65, 3092 (1990)CrossRefADSGoogle Scholar
  9. 9.
    Aalseth, C.E., et al.: IGEX collaboration. Phys. Rev. C 59, 2108 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Adler, S.L.: Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J. Phys. A 40, 2935 (2007)CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Morales, A., et al.: IGEX collaboration. Phys. Lett. B 532, 814 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • C. Curceanu
    • 1
    • 2
    • 3
  • S. Bartalucci
    • 1
  • A. Bassi
    • 4
  • M. Bazzi
    • 1
  • S. Bertolucci
    • 1
  • C. Berucci
    • 1
    • 5
  • A. M. Bragadireanu
    • 1
    • 3
  • M. Cargnelli
    • 5
  • A. Clozza
    • 1
  • L. De Paolis
    • 1
  • S. Di Matteo
    • 6
  • S. Donadi
    • 4
  • A. D’Uffizi
    • 1
  • J.-P. Egger
    • 7
  • C. Guaraldo
    • 1
  • M. Iliescu
    • 1
  • T. Ishiwatari
    • 5
  • M. Laubenstein
    • 8
  • J. Marton
    • 5
  • E. Milotti
    • 4
  • A. Pichler
    • 5
  • D. Pietreanu
    • 1
    • 3
  • K. Piscicchia
    • 1
    • 2
  • T. Ponta
    • 3
  • E. Sbardella
    • 1
  • A. Scordo
    • 1
  • H. Shi
    • 1
    • 5
  • D. L. Sirghi
    • 1
    • 3
  • F. Sirghi
    • 1
    • 3
  • L. Sperandio
    • 1
  • O. Vazquez Doce
    • 9
  • J. Zmeskal
    • 5
  1. 1.INFNLaboratori Nazionali di FrascatiFrascatiItaly
  2. 2.Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”RomeItaly
  3. 3.“Horia Hulubei” National Institute of Physics and Nuclear EngineeringBucharest - MagureleRomania
  4. 4.Dipartimento di FisicaUniversità di Trieste and INFN– Sezione di TriesteTriesteItaly
  5. 5.The Stefan Meyer Institute for Subatomic PhysicsViennaAustria
  6. 6.Institut de Physique UMR CNRS-UR1 6251Université de Rennes 1RennesFrance
  7. 7.Institut de PhysiqueUniversité de NeuchâtelNeuchâtelSwitzerland
  8. 8.INFNLaboratori Nazionali del Gran SassoL’AquilaItaly
  9. 9.Excellence Cluster UniverseTechnische Universität MünchenGarchingGermany

Personalised recommendations