Advertisement

Foundations of Physics

, Volume 45, Issue 11, pp 1465–1482 | Cite as

Splitting the Source Term for the Einstein Equation to Classical and Quantum Parts

  • T. S. Biró
  • P. Ván
Article

Abstract

We consider the special and general relativistic extensions of the action principle behind the Schrödinger equation distinguishing classical and quantum contributions. Postulating a particular quantum correction to the source term in the classical Einstein equation we identify the conformal content of the above action and obtain classical gravitation for massive particles, but with a cosmological term representing off-mass-shell contribution to the energy–momentum tensor. In this scenario the—on the Planck scale surprisingly small—cosmological constant stems from quantum bound states (gravonium) having a Bohr radius a as being \(\Lambda =3/a^2\).

Keywords

Cosmological constant problem Madelung transformation  Gravonium Partial conformal symmetry Bohm–Takabayashi energy–momentum tensor 

Notes

Acknowledgments

We thank Manfried Faber for detailed discussions. Antal Jakovác, András Patkós and Reinhard Alkofer contributed with inspiring remarks at the ACHT (Austrian-Croatian-Hungarian Triangle) Meeting in Retzhof, June 2013. We also thank to the referees for the constructive remarks. This work was supported by the Hungarian National Research Fund OTKA (K81161, K104260).

References

  1. 1.
    de Sitter, W.: On Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. R. Astron. Soc. 76, 699–728 (1916)CrossRefADSGoogle Scholar
  2. 2.
    de Sitter, W.: Erratum: On Einstein’s theory of gravitation and its astronomical consequences. Second paper. Mon. Not. R. Astron. Soc. 77, 155–184 (1916)CrossRefADSGoogle Scholar
  3. 3.
    de Sitter, W.: Einstein’s theory of gravitation and its astronomical consequences. Third paper. Mon. Not. R. Astron. Soc. 78, 3–28 (1917)CrossRefADSGoogle Scholar
  4. 4.
    Friedmann, A.: Über die Krümmung des Raumes. Z. Phys. 10, 377–386 (1922)CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Friedmann, A.: Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 21(1), 326–332 (1924)MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. 6.
    Lemaître, G.E.: Un univers homogéne de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extragalactiques. Ann. Sci. Soc. Bruss. 47A, 49–59 (1927)Google Scholar
  7. 7.
    Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin, pp. 142–152 (1917)Google Scholar
  8. 8.
    Einstein, A.: Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 235–237 (1931)Google Scholar
  9. 9.
    Padmanabhan, T.: Cosmological constant - the weight of the vacuum. Phys. Rep. 380, 235–320 (2003). arXiv:hep-th/0212290
  10. 10.
    Burgess, C.P.: The cosmological constant problem: Why it’ s hard to get dark energy from micro-physics. (2013) arXiv:1309.4133
  11. 11.
    Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci U S A. 15(3), 168–173 (1929)CrossRefADSzbMATHGoogle Scholar
  12. 12.
    Press, W.H., Carroll, S.M., Turner, E.L.: The cosmological constant. Annu. Rev. Astron. Astrophys. 30, 499–542 (1992)CrossRefADSGoogle Scholar
  13. 13.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61(1), 1–23 (1989)MathSciNetCrossRefADSzbMATHGoogle Scholar
  14. 14.
    Carroll, S.M.: The cosmological constant. Living Rev. Relativ. 3, 1 (2001)ADSGoogle Scholar
  15. 15.
    Ade, P.A.R. et al: Planck 2013 results. XVI, Cosmological parameters (2013)Google Scholar
  16. 16.
    Padmanabhan, T.: Dark energy: Mystery of the millennium. In J.-M. Alimi and Fűzfa A., (eds.), Albert Einstein Century International Conference, AIP Conference Proceedings, pp. 179–196. American Institute of Physics, 2006. arXiv:astro-ph/0603114
  17. 17.
    Schrödinger, E.: Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 79, 361–376 (1926)CrossRefzbMATHGoogle Scholar
  18. 18.
    Schrödinger, E.: Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann. Phys. 79, 489–527 (1926)CrossRefzbMATHGoogle Scholar
  19. 19.
    Schrödinger, E.: Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinem. Ann. Phys. 79, 734–756 (1926)CrossRefzbMATHGoogle Scholar
  20. 20.
    Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of ”hidden” variables I. Phys. Rev. 85(2), 166–179 (1952)CrossRefADSzbMATHGoogle Scholar
  22. 22.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of ”hidden” variables II. Phys. Rev. 85(2), 180–193 (1952)CrossRefADSGoogle Scholar
  23. 23.
    Bohm, D.: Proof that probability density approaches \(|\phi |^2\) of the quantum theory. Phys. Rev. 89(2), 458–466 (1953)MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96(1), 208–216 (1954)MathSciNetCrossRefADSzbMATHGoogle Scholar
  25. 25.
    Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8(2), 143–182 (1952)MathSciNetCrossRefADSzbMATHGoogle Scholar
  26. 26.
    Takabayasi, T.: Remarks on the formulation of quantum mechanics with classical pictures and on relations between linear scalar fields and hydrodynamical fields. Prog. Theor. Phys. 9(3), 187–222 (1953)MathSciNetCrossRefADSzbMATHGoogle Scholar
  27. 27.
    Einstein, A.: Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preussische Akademie der Wissenschaften zu Berlin, pp. 844–847 (1915)Google Scholar
  28. 28.
    Einstein, A.: Die Grundlagen der Algemeine Relativitätstheorie. Ann. Phys. 4(49), 769–822 (1916)CrossRefGoogle Scholar
  29. 29.
    Hilbert, D.: Die Grundlagen der Physik, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse pp. 395–408 (1915)Google Scholar
  30. 30.
    Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926). in GermanCrossRefADSzbMATHGoogle Scholar
  31. 31.
    Jánossy, L.: The hydrodynamical model of wave mechanics, (The many body problem). Acta Phys. Hung. 27, 35–46 (1969)CrossRefGoogle Scholar
  32. 32.
    Boeyens, J.C.A.: The geometry of quantum events. Specul. Sci. Technol. 15, 192–210 (1992)Google Scholar
  33. 33.
    Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49(3), 1613–1617 (1994)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Jánossy, L.: Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys. 169(1), 79–89 (1962)CrossRefADSGoogle Scholar
  35. 35.
    Jánossy, L., Ziegler, M.: The hydrodynamical model of wave mechanics I., (The motion of a single particle in a potential field). Acta Phy. Hung. 16(1), 37–47 (1963)CrossRefGoogle Scholar
  36. 36.
    Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics II., (The motion of a single particle in an external electromagnetic field). Acta Phys. Hung. 16(4), 345–353 (1964)CrossRefGoogle Scholar
  37. 37.
    Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics III., (Electron spin). Acta Phys. Hung. 20, 233–249 (1966)CrossRefGoogle Scholar
  38. 38.
    Bialynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Polon. Sci. Cl 3(23), 461 (1975)MathSciNetGoogle Scholar
  39. 39.
    Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Weinberg, S.: Testing quantum mechanics. Ann. Phys. 194, 336–386 (1989)MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    Bialynicki-Birula, I.: Hydrodynamic form of the Weyl equation. Acta Phys. Pol. 26(7), 1201–1208 (1995)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Bialynicki-Birula, I.: Hydrodynamics of relativistic probability flows, Nonlinear Dynamics, Chaotic and Complex Systems pp. 64–71 (1996)Google Scholar
  43. 43.
    Bialynicki-Birula, I.: The photon wave function. In Coherence and Quantum Optics VII, pp. 313–322 (1996)Google Scholar
  44. 44.
    Kuz’menkov, L.S., Maksimov, S.G.: Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential. Theor. Math. Phys. 118, 227–240 (1999)CrossRefzbMATHGoogle Scholar
  45. 45.
    Andreev, P.A., Kuz’menkov, L.S.: On equations for the evolution of collective phenomena in fermion systems. Russ. Phys. J. 50(12), 1251–1258 (2007)CrossRefzbMATHGoogle Scholar
  46. 46.
    Bialynicki-Birula, I., Bialynicka-Birula, Z.: Magnetic monopoles in the hydrodynamic formulation of quantum mechanics. Phys. Rev. D 3(10), 2410–2412 (1971)CrossRefADSGoogle Scholar
  47. 47.
    Bialynicki-Birula, I., Bialynicka-Birula, Z., Śliwa, C.: Motion of vortex lines in quantum mechanics. Phys. Rev. A 61(3), 032110 (2000)CrossRefADSGoogle Scholar
  48. 48.
    Bialynicki-Birula, I., Bialynicka-Birula, Z.: Vortex lines of the electromagnetic field. Phys. Rev. A 67(6), 062114 (2003)MathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Ovchinnikov, S.Y., Macek, J.H., Schultz, D.R.: Hydrodynamical interpretation of angular momentum and energy transfer in atomic processes. Phys. Rev. A 90(6), 062713 (2014)CrossRefADSGoogle Scholar
  50. 50.
    Schmidt, LPhH, Goihl, C., Metz, D., Schmidt-Böcking, H., Dörner, R., Ovchinnikov, SYu., Macek, J.H., Schultz, D.R.: Vortices associated with the wave function of a single electron emitted in slow ion-atom collisions. Phys. Rev. Lett. 112(8), 083201 (2014)CrossRefADSGoogle Scholar
  51. 51.
    Takabayasi, T.: Relativistic hydrodynamics of the Dirac matter Part I. General theory. Suppl. Prog. Theor. Phys. 4, 1–80 (1957)CrossRefADSGoogle Scholar
  52. 52.
    Bistrovic, B., Jackiw, R., Li, H., Nair, V.P., and Pi, S.-Y.: Non-Abelian fluid dynamics in Lagrangian formulation. Phys. Rev. D, (67):025013(11), (2003) (hep-th/0210143)Google Scholar
  53. 53.
    Jackiw, R., Nair, V.P., Pi, S.-Y., Polychronakos, A.P.: Perfect fluid theory and its extensions. J. Phys. A 37, R327–R432 (2004). arXiv:hep-ph/0407101
  54. 54.
    Benseny, A., Albareda, G., Sanz, S., Mompart, J., Oriols, X.: Applied Bohmian mechanics. Eur. Phys. J. D 68(10), 1–42 (2014)CrossRefGoogle Scholar
  55. 55.
    Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  56. 56.
    Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics). Contributions by Trahan, C. J., Interdisciplinary Applied Mathematics. vol. 28. Springer, Berlin (2005)Google Scholar
  57. 57.
    Ván, P., Fülöp, T.: Weakly nonlocal fluid mechanics - the Schrödinger equation. Proc. R. Soc. A. 462(2066), 541–557 (2006)CrossRefADSzbMATHGoogle Scholar
  58. 58.
    Heim, D.M., Schleich, W.P., Alsing, P.M., Dahl, J.P., Varró, S.: Tunneling of an energy eigenstate through a parabolic barrier viewed from wigner phase space. Phys. Lett. A 377(31), 1822–1825 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  59. 59.
    Ván, P.: Weakly Nonlocal Non-Equilibrium Thermodynamics—Variational Principles and Second Law. In Quak, E., Soomere, T. (eds.), Applied Wave Mathematics (Selected Topics in Solids, Fluids, and Mathematical Methods), chapter III, pp. 153–186. Springer, Berlin (2009). arXiv:0902.3261
  60. 60.
    Fülöp, T., Katz, S.D.: A frame and gauge free formulation of quantum mechanics (1998). quant-ph/9806067
  61. 61.
    Schrödinger, E.: Über eine bemerkenswerte Eigenschaft der Quantenbahnen eines einzelnen Elektrons. Z. Phys. 12(1), 13–23 (1923)CrossRefADSGoogle Scholar
  62. 62.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)Google Scholar
  63. 63.
    Delphenic, D.H.: A geometric origin for the Madelung potential. arXiv:gr-qc/0211065
  64. 64.
    Delphenic, D.H.: A strain tensor that couples to the Madelung stress tensor. arXiv:1303.3582
  65. 65.
    Carroll, R.: Remarks on geometry and the quantum potential. arXiv:math-ph/0701007
  66. 66.
    Callan, C.G., Coleman, S., Jackiw, R.: A new improved energy-momentum tensor. Ann. Phys. 59, 42–73 (1970)MathSciNetCrossRefADSzbMATHGoogle Scholar
  67. 67.
    Forger, M., Römer, H.: Currents and the energy-momentum tensor in classical field theory. Ann. Phys. 309(2), 306–389 (2004)CrossRefADSzbMATHGoogle Scholar
  68. 68.
    Pons, J.M.: Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory. J. Math. Phys. 52, 012904 (2011)MathSciNetCrossRefADSGoogle Scholar
  69. 69.
    Brans, C.H., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124(3), 925–935 (1961)MathSciNetCrossRefADSzbMATHGoogle Scholar
  70. 70.
    Fujii, Y.: Dilaton and possible non-Newtonian gravity. Nat. Phys. Sci. 234(9), 5–7 (1971)CrossRefADSGoogle Scholar
  71. 71.
    Fujii, Y.: Scale invariance and gravity of hadrons. Ann. Phys. 69, 494–521 (1972)CrossRefADSGoogle Scholar
  72. 72.
    Fujji, Y., Maeda, K.-I.: The Scalar-Tensor Theory of Gravitation. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  73. 73.
    Gasperini, M., Veneziano, G.: The pre-big bang scenario in string cosmology. Phys. Rep. 373(1), 1–212 (2003)MathSciNetCrossRefADSGoogle Scholar
  74. 74.
    Brans, C.H.: The roots of scalar-tensor theory: an approximate history (2005). arXiv:gr-qc/0506063
  75. 75.
    Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  76. 76.
    Galindo, A., Pascual, P.: Quantum Mechanics I. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  77. 77.
    Dong, S.-H.: Wave Equations in Higher Dimensions. Springer, Dordrecht (2011)CrossRefzbMATHGoogle Scholar
  78. 78.
    Gotay, M.J., Marsden, J.E.: Stress-energy-momentum tensors and the Belinfante–Rosenfeld formula. Contemp. Math. 132, 367–392 (1992)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125(6), 2163 (1962)MathSciNetCrossRefADSzbMATHGoogle Scholar
  80. 80.
    Flanagan, E.E.: The conformal frame freedom in theories of gravitation. Class. Quantum Gravity 21(15), 3817 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  81. 81.
    Faraoni, V., Nadeau, S.: (Pseudo) issue of the conformal frame revisited. Phys. Rev. D 75(2), 023501 (2007)MathSciNetCrossRefADSGoogle Scholar
  82. 82.
    Carroll, R.: On the Emergence Theme of Physics. World Scientific, Singapore (2010)CrossRefzbMATHGoogle Scholar
  83. 83.
    Carroll, R.: Remarks on gravity and quantum geometry. arXiv:1007.4744 [math.ph]
  84. 84.
    Koch, B.: Quantizing geometry or geometrizing the quantum? In QUANTUM THEORY: Reconsideration of Foundations-5. In: Proceedings of the AIP Conference Proceedings, vol. 1232, pp. 313–320. American Institute of Physics (2010). arXiv:1004.2879v2 [hep-th]
  85. 85.
    Koch, B.: A geometrical dual to relativistic Bohmian mechanics—the multi particle case. arXiv:0901.4106
  86. 86.
    Smolin, L.: Could quantum mechanics be an approximation to another theory? arXiv:quant-ph/0609109
  87. 87.
    Schmelzer, I.: An answer to the Walstrom objection against Nelsonian statistics. arXiv:1101.5774 [quant-ph]
  88. 88.
    Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509(4), 167–321 (2011)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsMTA Wigner Research Centre for PhysicsBudapestHungary

Personalised recommendations