Foundations of Physics

, Volume 45, Issue 10, pp 1190–1202 | Cite as

Simulation of the Hydrogen Ground State in Stochastic Electrodynamics-2: Inclusion of Relativistic Corrections

  • Theodorus M. Nieuwenhuizen
  • Matthew T. P. Liska
Article

Abstract

In a recent paper the authors studied numerically the hydrogen ground state in stochastic electrodynamics (SED) within the the non-relativistic approximation. In quantum theory the leading non-relativistic corrections to the ground state energy dominate the Lamb shift related to the photon cloud that should cause the quantum-like behaviour of SED. The present work takes these corrections into account in the numerical modelling. It is found that they have little effect; the self-ionisation that occurs without them remains present. It is speculated that the point-charge approximation for the electron is the cause of the failure.

Keywords

Stochastic electrodynamics Hydrogen ground state Relativistic corrections Simulations OpenCL 

References

  1. 1.
    de la Peña, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  2. 2.
    de la Peña, L., Cetto, A.M., Valdés Hernández, A.: The Emerging Quantum: The Physics Behind Quantum Mechanics. Springer, Berlin (2014)Google Scholar
  3. 3.
    Nieuwenhuizen, ThM: Is the contextuality loophole fatal for the derivation of Bell inequalities? Found. Phys. 41, 580 (2010)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    de la Peña, L., Cetto, A.M., Valdés-Hernándes, A.: Quantum behaviour derived as an essentially stochastic behaviour. Phys. Scr. T 151, 014008 (2012)CrossRefADSGoogle Scholar
  5. 5.
    França, H.M., Kamimura, A., Barreto, G.A.: The Schrödinger equation, the zero-point electromagnetic radiation and the photoelectric effect. (2012) arXiv:1207.4076
  6. 6.
    Cetto, A.M., de la Peña, L.: Radiative corrections for the matter-zeropoint field system: establishing contact with quantum electrodynamics. Phys. Scr. T 151, 014009 (2012)CrossRefADSGoogle Scholar
  7. 7.
    Nieuwenhuizen, T.M.: The Pullback mechanism in stochastic electrodynamics. AIP Conf. Proc. 962, 148 (2007)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Nieuwenhuizen, T.M.: A subquantum arrow of time. J. Phys. 504, 012008 (2014)Google Scholar
  9. 9.
    Claverie, P., Soto, F.: Nonrecurrence of the stochastic process for the hydrogen atom problem in stochastic electrodynamics. J. Math. Phys. 23, 753 (1982)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Puthoff, H.E.: Ground state of hydrogen as a zero-point-fluctuation-determined state. Phys. Rev. D 35, 3266 (1987)CrossRefADSGoogle Scholar
  11. 11.
    Cole, D.C., Zou, Y.: Quantum mechanical ground state of hydrogen obtained from classical electrodynamics. Phys. Lett. A 317, 14 (2003)MATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Nieuwenhuizen, Th. M., and Liska, M. T. P.: Simulation of the hydrogen ground state in stochastic electrodynamics, (2014). Phys. Scr. to appear (2015). arXiv:1502.06856
  13. 13.
    Nieuwenhuizen, T.M.: Classical phase space density for the relativistic hydrogen atom. AIP Conf. Proc. 810, 198 (2006)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Boyer, T.H.: Comments on Cole and Zou’s calculation of the hydrogen ground state in classical physics. Found. Phys. Lett. 16, 613 (2003)CrossRefGoogle Scholar
  15. 15.
    Boyer, T.H.: Unfamiliar trajectories for a relativistic particle in a Kepler or Coulomb potential. Am. J. Phys. 72, 992 (2004)MATHCrossRefADSGoogle Scholar
  16. 16.
    de la Peña, L., Jáuregui, A.: Stochastic electrodynamics for the free particle. J. Math. Phys. 24, 2751 (1983)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Theodorus M. Nieuwenhuizen
    • 1
    • 2
  • Matthew T. P. Liska
    • 1
  1. 1.Institute for Theoretical PhysicsAmsterdamThe Netherlands
  2. 2.International Institute of PhysicsUFRGNatalBrazil

Personalised recommendations