Foundations of Physics

, Volume 44, Issue 7, pp 725–735 | Cite as

Lagrangian form of Schrödinger equation

  • D. Arsenović
  • N. Burić
  • D. M. Davidović
  • S. Prvanović
Article
  • 337 Downloads

Abstract

Lagrangian formulation of quantum mechanical Schrödinger equation is developed in general and illustrated in the eigenbasis of the Hamiltonian and in the coordinate representation. The Lagrangian formulation of physically plausible quantum system results in a well defined second order equation on a real vector space. The Klein–Gordon equation for a real field is shown to be the Lagrangian form of the corresponding Schrödinger equation.

Notes

Acknowledgments

This work was supported in part by the Ministry of Education and Science of the Republic of Serbia, under project No. 171017, 171028 and 171006. and by COST (Action MP1006).

References

  1. 1.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Claredon Press, Oxford (1958)MATHGoogle Scholar
  2. 2.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)CrossRefMATHGoogle Scholar
  3. 3.
    Deriglazov, A.: Classical Mechanics Hamiltonian and Lagrangian Formalism. Springer, Berlin (2010)MATHGoogle Scholar
  4. 4.
    Schrödinger, E.: Quantisierung als eigenwertproblem (Vierte Mitteilung). Ann. Physik 81, 109 (1926)CrossRefMATHGoogle Scholar
  5. 5.
    Deriglazov, A.: Analysis of constrained theories without use of primary constraints. Phys. Lett. B 626, 243 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dirac, P.A.M.: The lagrangian in quantum mechanics. Phys. Zeits. Sowjetunion 3, 64 (1933)Google Scholar
  7. 7.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)MATHGoogle Scholar
  8. 8.
    Kibble, T.W.B.: Relativistic models of nonlinear quantum mechanics. Commun. Math. Phys. 64, 73 (1978)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Heslot, A.: Quantum mechanics as a classical theory. Phys. Rev. D 31, 1341 (1985)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ashtekar, A., Schilling, T.A.: Geometrical formulation of quantum mechanics. In: Harvey, A. (ed.) On Einstein’s Path. Springer, Berlin (1998)Google Scholar
  11. 11.
    Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Burić, N.: Hamiltonian quantum dynamics with separability constraints. Ann. Phys. (NY) 233, 17 (2008)ADSGoogle Scholar
  13. 13.
    Brody, D.C., Gustavsson, A.C.T., Hughston, L.P.: Symplectic approach to quantum constraints. J. Phys. A 41, 475301 (2008)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Radonjić, M., Prvanović, S., Burić, N.: System of classical nonlinear oscillators as a coarse-grained quantum system. Phys. Rev. A 84, 022103 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Radonjić, M., Prvanović, S., Burić, N.: Emergence of classical behavior from the quantum spin. Phys. Rev. A 85, 022117 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Elze, H.-T.: Linear dynamics of quantum-classical hybrids. Phys. Rev. A 85, 052109 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Radonjić, M., Prvanović, S., Burić, N.: Hybrid quantum-classical models as constrained quantum systems. Phys. Rev. A 85, 064101 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Burić, N., Mendaš, I., Popović, D.B., Radonjić, M., Prvanović, S.: Statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems. Phys. Rev. A 86, 034104 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Sakurai, J.J.: Advanced Quantum Mechanics. Addison Wesley, Reading, MA (1967)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. Arsenović
    • 1
  • N. Burić
    • 1
  • D. M. Davidović
    • 2
  • S. Prvanović
    • 1
  1. 1.Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Vinca Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations