Foundations of Physics

, Volume 44, Issue 5, pp 523–531 | Cite as

Strong Constraints on Models that Explain the Violation of Bell Inequalities with Hidden Superluminal Influences

  • Valerio Scarani
  • Jean-Daniel Bancal
  • Antoine Suarez
  • Nicolas Gisin
Article

Abstract

We discuss models that attempt to provide an explanation for the violation of Bell inequalities at a distance in terms of hidden influences. These models reproduce the quantum correlations in most situations, but are restricted to produce local correlations in some configurations. The argument presented in (Bancal et al. Nat Phys 8:867, 2012) applies to all of these models, which can thus be proved to allow for faster-than-light communication. In other words, the signalling character of these models cannot remain hidden.

Keywords

Nonlocality Bell inequalities Faster-than-light influences  Nonlocal hidden variables 

Notes

Acknowledgments

We are grateful to Yeong-Cherng Liang and Stefano Pironio for helpful comments and stimulating discussions. This work is supported by the Ministry of Education, the National Research Foundation of Singapore and the Swiss NCCR-QSIT. A.S. acknowledges support from the Social Trends Institute (Barcelona and New York).

References

  1. 1.
    Bell, J.S.: La nouvelle cuisine. Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  2. 2.
    Eberhard, P.H.: The EPR paradox. Roots and ramifications. In: Schommers, W. (ed.) Quantum theory and pictures of reality. Springer, Berlin (1989)Google Scholar
  3. 3.
    Bancal, J.-D., Pironio, S., Acin, A., Liang, Y.-C., Scarani, V., Gisin, N.: Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867–870 (2012)CrossRefGoogle Scholar
  4. 4.
    N. Gisin, Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality, arXiv:1210.7308.
  5. 5.
    Suarez, A., Scarani, V.: Does entanglement depend on the timing of the impacts at the beam-splitters? Phys. Lett. A 232, 9–14 (1997)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Comm. 2, 411 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Suarez, A.: Relativistic nonlocality (RNL) in experiments with moving polarizers and 2 non-before impacts. Phys. Lett. A 236, 383–390 (1997)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Scarani, V., Gisin, N.: Superluminal influences, hidden variables, and signaling. Phys. Lett. A 295, 167–174 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Scarani, V., Gisin, N.: Superluminal hidden communication as the underlying mechanism for quantum correlations: constraining models. Brazilian J. Phys. 35, 328–332 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Zbinden, H., Brendel, J., Tittel, W., Gisin, N.: Experimental test of relativistic quantum state collapse with moving reference frames. J. Phys. A 34, 7103–7109 (2001)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Zbinden, H., Brendel, J., Gisin, N., Tittel, W.: Experimental test of nonlocal quantum correlation in relativistic configurations. Phys. Rev. A 63, 022111 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Stefanov, A., Zbinden, H., Gisin, N., Suarez, A.: Quantum correlations with spacelike separated beam splitters in motion: experimental test of multisimultaneity. Phys. Rev. Lett. 88, 120404 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Stefanov, A., Zbinden, H., Gisin, N., Suarez, A.: Quantum entanglement with acousto-optic modulators: two-photon beats and bell experiments with moving beam splitters. Phys. Rev. A 67, 042115 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Rideout, D., Jennewein, T., Amelino-Camelia, G., Demarie, T.F., Higgins, B.L., Kempf, A., Kent, A., Laflamme, R., Ma, X., Mann, R.B., Martin-Martinez, E., Menicucci, N.C., Moffat, J., Simon, C., Sorkin, R., Smolin, L., Terno, D.R.: Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities. Class. Quantum Grav. 29, 224011 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Barnea, J.T., Bancal, J.-D.: Y-C. Liang and N. Gisin, Tripartite quantum state violating the hidden-influence constraints. Phys. Rev. A 88, 022123 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    A. Suarez, Decision at the beam-splitter, or decision at detection, that is the question, arXiv:1204.5848.
  17. 17.
    Guerreiro, T., Sanguinetti, B., Zbinden, H., Gisin, N., Suarez, A.: Single-photon space-like antibunching. Phys. Lett. A 376, 2174–2177 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Valerio Scarani
    • 1
    • 2
  • Jean-Daniel Bancal
    • 1
  • Antoine Suarez
    • 3
  • Nicolas Gisin
    • 4
  1. 1.Centre for Quantum TechnologiesNational University of SingaporeSingapore Singapore
  2. 2.Department of PhysicsNational University of SingaporeSingapore Singapore
  3. 3.Center for Quantum PhilosophyZurichSwitzerland
  4. 4.Group of Applied PhysicsUniversity of GenevaGenevaSwitzerland

Personalised recommendations