Advertisement

Foundations of Physics

, Volume 44, Issue 2, pp 114–143 | Cite as

Benefits of Objective Collapse Models for Cosmology and Quantum Gravity

  • Elias Okon
  • Daniel Sudarsky
Article

Abstract

We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.

Keywords

Objective reduction Quantum gravity Cosmology Problem of time Information loss paradox Seeds of cosmic structure 

Notes

Acknowledgments

We would like to acknowledge partial financial support from DGAPA—UNAM projects IN107412 (DS), IA400312 (EO), and CONACyT project 101712 (DS).

References

  1. 1.
    Perez, A., Sahlmann, H., Sudarsky, D.: On the quantum origin of the seeds of cosmic structure. Class. Quantum Gravity 23, 2317 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453 (1966)Google Scholar
  3. 3.
    Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13, 857 (1976)Google Scholar
  4. 4.
    Pearle, P.: Towards explaining why events occur. Int. J. Theor. Phys. 18, 489 (1979)Google Scholar
  5. 5.
    Ghirardi, G., Rimini, A., Weber, T.: A model for a unified quantum description of macroscopic and microscopic systems. In: Accardi, A.L. (ed.) Quantum Probability and Applications, pp. 223–232. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  6. 6.
    Ghirardi, G., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bassi, A., Lochan, K., Satin, S., Singh, T., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Tumulka, R.: A relativistic version of the Ghirardi–Rimini–Weber model. J. Stat. Phys. 125, 821 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Bedingham, D.: Relativistic state reduction model. J. Phys. Conf. Ser. 306, 012034 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Tumulka, R.: On spontaneous wave function collapse and quantum field theory. Proc. R. Soc. A 462, 1897 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277–2289 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    Ghirardi, G., Pearle, P., Rimini, A.: Markov-processes in Hilbert-space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pearle, P.: Toward a relativistic theory of statevector reduction. In: Miller, A. (ed.) Sixty-Two Years of Uncertainty, pp. 193–214. Plenum, New York (1990)CrossRefGoogle Scholar
  14. 14.
    Ghirardi, G., Grassi, R., Pearle, P.: Relativistic dynamical reduction models: General framework and examples. Found. Phys., J.S. Bell’s 60th birthday issue 20, 1271 (1990).Google Scholar
  15. 15.
    Albert, D.: In: Clifton, R. (ed.) Perspectives on Quantum Reality: Non-relativistic, Relativistic, Field-Theoretic, pp. 81–92. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  16. 16.
    Lewis, P.J., Stud: Interpreting spontaneous collapse theories. His. Phil. Mod. Phys. 36, 165–180 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ghirardi, G., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 35, 5 (1995)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bedingham, D., Dürr, D., Ghirardi, G., Goldstein, S., Tumulka, R., Zanghì, N.: Matter density and relativistic models of wave function collapse. J. Stat. Phys. (2013), arXiv:1111.1425.
  19. 19.
    Bell, J.S.: Are there quantum jumps? In: Kilminster, C.W. (ed.) Schrödinger: Centenary Celebration of a Polymath, pp. 109–123. Cambridge University Press, Cambridge (1987)Google Scholar
  20. 20.
    García, G.L., Landau, S.J., Sudarsky, D.: Quantum origin of the primordial fluctuation spectrum and its statistics. Phys. Rev. D 88, 023526 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Padmanabhan, T.: Structure Formation in the Universe. Cambridge University Press, Cambridge (1993)Google Scholar
  22. 22.
    Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  23. 23.
    Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  24. 24.
    Sudarsky, D.: Shortcomings in the understanding of why cosmological perturbations look classical. Int. J. Mod. Phys. D 20, 509 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Diez-Tejedor, A., Sudarsky, D.: Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. JCAP 07, 045 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Unanue, A.D., Sudarsky, D.: Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure. Phys. Rev. D 78, 043510 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Landau, S.J., Scoccola, C.G., Sudarsky, D.: Cosmological constraints on nonstandard inflationary quantum collapse models. Phys. Rev. D 85, 123001 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Martin, J., Vennin, V., Peter, P.: Cosmological inflation and the quantum measurement problem. arXiv:1207.2086 [hep-th] (2012).
  29. 29.
    Cañate, P., Pearle, P., Sudarsky, D.: Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation. Phys. Rev. D 87, 104024 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Das, S., Lochan, K., Sahu, S., Singh, T.P.: Quantum to classical transition of inflationary perturbations: continuous spontaneous localization as a possible mechanism. Phys. Rev. D 87, 085020 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Isham, C.J.: Canonical quantum gravity and the problem of time. gr-qc/9210011 (1992).
  32. 32.
    Gambini, R., Porto, R.A., Pullin, J.: Realistic clocks, universal decoherence and the black hole information paradox. Phys. Rev. Lett. 93, 240401 (2004)ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Gambini, R., Porto, R.A., Pullin, J.: Fundamental decoherence from relational time in discrete quantum gravity: Galilean covariance. Phys. Rev. D 70, 124001 (2004)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? (2012) arXiv:1207.3123 .
  36. 36.
    Braunstein, S. L.: Black hole entropy as entropy of entanglement or it’s curtains for the equivalence principle (2009) arXiv:0907.1190v1 [quant-ph].
  37. 37.
    Braunstein, S.L., Pirandola, S., Zyczkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110, 101301 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quantum Gravity 22, 3349 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Pearle, P., Squires, E.: Bound-state excitation, nucleaon decay experiments, and models of wave-function collapse. Phys. Rev. Lett. 73, 1 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    Penrose, R.: The Road to Reality. Knopf, New York (2004)Google Scholar
  41. 41.
    Penrose, R.: Time asymmetry and quantum gravity. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity II, p. 244 (1981)Google Scholar
  42. 42.
    Hawking, S.: Quantum black holes. In: Hawking, S., Penrose, R. (eds.) The Nature of Space and Time, pp. 37–60. Princeton University Press, Princeton (2000)Google Scholar
  43. 43.
    Callender, C.: Is time an illusion? Sci. Am. 302(3), 1–11 (2010)Google Scholar
  44. 44.
    Callender, C.: Shedding light on time. Philos. Sci. (Proc.) 67, S587 (2000)CrossRefGoogle Scholar
  45. 45.
    Callender, C. (ed.): Time, Reality and Experience. Time, Reality and Experience. Cambridge University Press, Cambridge (2002)Google Scholar
  46. 46.
    Smolin, L.: The Life of the Cosmos. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  47. 47.
    Bassi, A., Durr, D., Hinrichs, G.: Uniqueness of the equation for quantum state vector collapse. Phys. Rev. Lett. 111, 210401 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Colin, S., Valentini, A.: Mechanism for the suppression of quantum noise at large scales on expanding space (2013). arXiv:1306.1579 [hep-th].
  49. 49.
    Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Valentini, A.: Hidden variables and the large-scale structure of spacetime. In: Craig, W.L., Smith, Q. (eds.) Einstein, Relativity and Absolute Simultaneity, pp. 125–155. Routledge, London (2005)Google Scholar
  51. 51.
    Pinto-Neto, N., Fabris, J.C.: Quantum cosmology from the de Broglie–Bohm perspective. Class. Quantum Gravity 30, 143001 (2013)ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    Pinto-Neto, N., Santos, G., Struyve, W.: Quantum-to-classical transition of primordial cosmological perturbations in de Broglie–Bohm quantum theory. Phys. Rev. D 85, 083506 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Falciano, F., Pinto-Neto, N.: Scalar perturbations in scalar field quantum cosmology. Phys. Rev. D 79, 023507 (2009)ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    Goldstein, S., Teufel, S.: Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity. Physics Meets Philosophy at the Planck Scale, pp. 275–289. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de Investigaciones FilosóficasUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations