Advertisement

Foundations of Physics

, Volume 43, Issue 12, pp 1478–1488 | Cite as

A New Approach to Modifying Theories of Gravity

  • Christian G. BöhmerEmail author
  • Nicola Tamanini
Article

Abstract

We propose a new point of view for interpreting Newton’s and Einstein’s theories of gravity. By taking inspiration from Continuum Mechanics and its treatment of anisotropies, we formulate new gravitational actions for modified theories of gravity. These models are simple and natural generalisations with many interesting properties. Above all, their precise form can, in principle, be determined experimentally.

Keywords

Modified gravity General relativity Continuum mechanics 

Notes

Acknowledgements

We thank Friedrich Hehl and Dmitri Vassiliev for useful discussions. We would also like to thank the anonymous referees who have given us very valuable feedback.

References

  1. 1.
    Milgrom, M.: Astrophys. J. 270, 365 (1983) ADSCrossRefGoogle Scholar
  2. 2.
    Milgrom, M.: Astrophys. J. 270, 371 (1983) ADSCrossRefGoogle Scholar
  3. 3.
    Goenner, H.F.M.: Living Rev. Rel. 7, 2 (2004) MathSciNetGoogle Scholar
  4. 4.
    Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics. Birkhäuser, Boston (2003) CrossRefzbMATHGoogle Scholar
  5. 5.
    Klein, F.: Nachrichten der Kgl. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse (1917) Vorgelegt in der Sitzung, vol. 25, Januar 1918. In: Fricke, R., Ostrowski, A. (eds.) Felix Klein Gesammelte Mathematische Abhandlungen, Erster Band. Springer, Berlin (1921) CrossRefGoogle Scholar
  6. 6.
    Battye, R.A., Pearson, J.A.: Massive gravity, the elasticity of space-time and perturbations in the dark sector. arXiv:1301.5042 [astro-ph.CO]
  7. 7.
    Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961) MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Green, A.E., Zerna, W.: Theoretical Elasticity. Oxford University Press, London (1963) Google Scholar
  9. 9.
    Dirac, P.A.M.: Proc. Roy. Soc. Lond. A 165, 199 (1938) ADSCrossRefGoogle Scholar
  10. 10.
    Barrow, J.D., Parsons, P.: Phys. Rev. D 55, 1906 (1997). arXiv:gr-qc/9607072 ADSCrossRefGoogle Scholar
  11. 11.
    Uzan, J.-P.: Living Rev. Rel. 14, 2 (2011). arXiv:1009.5514 [astro-ph.CO] Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity College LondonLondonUK

Personalised recommendations