Foundations of Physics

, Volume 43, Issue 12, pp 1459–1477 | Cite as

Hamiltonian Formulation of Statistical Ensembles and Mixed States of Quantum and Hybrid Systems

  • N. Burić
  • D. B. Popović
  • M. Radonjić
  • S. Prvanović
Article

Abstract

Representation of quantum states by statistical ensembles on the quantum phase space in the Hamiltonian form of quantum mechanics is analyzed. Various mathematical properties and some physical interpretations of the equivalence classes of ensembles representing a mixed quantum state in the Hamiltonian formulation are examined. In particular, non-uniqueness of the quantum phase space probability density associated with the quantum mixed state, Liouville dynamics of the probability densities and the possibility to represent the reduced states of bipartite systems by marginal distributions are discussed in detail. These considerations are used to study ensembles of hybrid quantum-classical systems. In particular, nonlinear evolution of a single hybrid system in a pure state and unequal evolutions of initially equivalent ensembles are discussed in the context of coupled hybrid systems.

Keywords

Statistical ensembles Hybrid systems 

Notes

Acknowledgements

We acknowledge support by the Ministry of Science and Education of the Republic of Serbia, contract Nos. 171006, 171017, 171020, 171038, 45016 and by COST (Action MP1006). We thank the referee for his detailed suggestions.

References

  1. 1.
    Kibble, T.W.B.: Commun. Math. Phys. 64, 73 (1978) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Kibble, T.W.B.: Commun. Math. Phys. 65, 189 (1979) MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    Heslot, A.: Phys. Rev. D 31, 1341 (1985) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Ashtekar, A., Schilling, T.A.: Geometrical formulation of quantum mechanics. In: Harvey, A. (ed.) On Einstein’s Path. Springer, Berlin (1998) Google Scholar
  5. 5.
    Brody, D.C., Hughston, L.P.: J. Geom. Phys. 38, 19 (2001) MathSciNetADSCrossRefMATHGoogle Scholar
  6. 6.
    Burić, N.: Ann. Phys. (NY) 233, 17 (2008) ADSGoogle Scholar
  7. 7.
    Brody, D.C., Gustavsson, A.C.T., Hughston, L.P.: J. Phys. A 41, 475301 (2008) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Radonjić, M., Prvanović, S., Burić, N.: Phys. Rev. A 84, 022103 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    Radonjić, M., Prvanović, S., Burić, N.: Phys. Rev. A 85, 022117 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Elze, H.-T.: Phys. Rev. A 85, 052109 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, Q., Wu, B.: Phys. Rev. Lett. 97, 190401 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    Radonjić, M., Prvanović, S., Burić, N.: Phys. Rev. A 85, 064101 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    Burić, N., Mendaš, I., Popović, D.B., Radonjić, M., Prvanović, S.: Phys. Rev. A 86, 034104 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    Hughston, L.P., Jozsa, R., Wooters, W.K.: Phys. Lett. A 183, 14 (1993) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) CrossRefMATHGoogle Scholar
  16. 16.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1994) CrossRefMATHGoogle Scholar
  17. 17.
    Mielnik, B.: Commun. Math. Phys. 37, 221 (1974) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Weinberg, S.: Ann. Phys. 194, 336 (1989) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Mielnik, B.: Phys. Lett. A 289, 1 (2001) MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    Gisin, N.: Phys. Lett. A 143, 1 (1990) ADSCrossRefGoogle Scholar
  21. 21.
    Peres, A.: Phys. Rev. Lett. 63, 1114 (1989) ADSCrossRefGoogle Scholar
  22. 22.
    Gibbons, G.W.: J. Geom. Phys. 8, 147 (1992) MathSciNetADSCrossRefMATHGoogle Scholar
  23. 23.
    Hassett, B.: Introduction to Algebraic Geometry. Cambridge University Press, Cambridge (2007) CrossRefMATHGoogle Scholar
  24. 24.
    Sherry, T.N., Sudarshan, E.C.G.: Phys. Rev. D 18, 4580 (1978) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Boucher, W., Traschen, J.: Phys. Rev. D 37, 3522 (1988) ADSCrossRefGoogle Scholar
  26. 26.
    Aleksandrov, I.V.: Z. Naturforsch. 36A, 902 (1981) ADSGoogle Scholar
  27. 27.
    Peres, A., Terno, D.R.: Phys. Rev. A 63, 022101 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    Diósi, L., Gisin, N., Strunz, W.T.: Phys. Rev. A 61, 02108 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    Hall, M.J.W., Reginatto, M.: Phys. Rev. A 72, 062109 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    Salcedo, L.L.: Phys. Rev. A 85, 022127 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    Barceló, C., Carballo-Rubio, R., Garay, L.J., Gómez-Escalante, R.: Phys. Rev. A 86, 042120 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    Doebner, H.D.: Phys. Lett. A 301, 139 (2002) MathSciNetADSCrossRefMATHGoogle Scholar
  33. 33.
    Diósi, L.: J. Phys. Conf. Ser. 306, 012006 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    Burić, N., Popović, D.B., Radonjić, M., Prvanović, S.: Phase space hybrid theory of quantum measurement with nonlinear and stochastic dynamics. Available as: arXiv:1307.8424
  35. 35.
    Elze, H.-T.: Int. J. Quantum Inf. 10, 1241012 (2012) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. Burić
    • 1
  • D. B. Popović
    • 1
  • M. Radonjić
    • 1
  • S. Prvanović
    • 1
  1. 1.Institute of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations