Foundations of Physics

, Volume 43, Issue 10, pp 1233–1251 | Cite as

The Pauli Exclusion Principle. Can It Be Proved?

  • I. G. KaplanEmail author


The modern state of the Pauli exclusion principle studies is discussed. The Pauli exclusion principle can be considered from two viewpoints. On the one hand, it asserts that particles with half-integer spin (fermions) are described by antisymmetric wave functions, and particles with integer spin (bosons) are described by symmetric wave functions. This is a so-called spin-statistics connection. The reasons why the spin-statistics connection exists are still unknown, see discussion in text. On the other hand, according to the Pauli exclusion principle, the permutation symmetry of the total wave functions can be only of two types: symmetric or antisymmetric, all other types of permutation symmetry are forbidden; although the solutions of the Schrödinger equation may belong to any representation of the permutation group, including the multi-dimensional ones. It is demonstrated that the proofs of the Pauli exclusion principle in some textbooks on quantum mechanics are incorrect and, in general, the indistinguishability principle is insensitive to the permutation symmetry of the wave function and cannot be used as a criterion for the verification of the Pauli exclusion principle. Heuristic arguments are given in favor that the existence in nature only the one-dimensional permutation representations (symmetric and antisymmetric) are not accidental. As follows from the analysis of possible scenarios, the permission of multi-dimensional representations of the permutation group leads to contradictions with the concept of particle identity and their independence. Thus, the prohibition of the degenerate permutation states by the Pauli exclusion principle follows from the general physical assumptions underlying quantum theory.


Pauli exclusion principle Spin-statistics connection Indistinguishability principle Permutation symmetry 



I am grateful to Serge Zagoulaev and Steve Elliot for helpful discussions.


  1. 1.
    Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765–783 (1925) ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Pauli, W.: Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt. Z. Phys. 31, 373–385 (1925) ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Uhlenbeck, G.E., Goudsmit, S.: Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Naturwissenschaften 13, 953–954 (1925) ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    van der Waerden, B.L.: Exclusion principle and spin. In: Fierz, M., Weisskopf, V.F. (eds.) Theoretical Physics in the Twentieth Century, pp. 199–244. Cambridge University Press, Cambridge (1960) Google Scholar
  5. 5.
    Heisenberg, W.: Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys. 38, 411–426 (1926) ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Dirac, P.A.M.: On the theory of quantum mechanics. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 112, 621–641 (1926) ADSCrossRefGoogle Scholar
  7. 7.
    Dieke, H.G., Babcock, H.D.: The structure of the atmospheric absorption bands of oxygen. Proc. Natl. Acad. Sci. USA 13, 670–678 (1927) ADSCrossRefGoogle Scholar
  8. 8.
    Hilborn, R.C., Yuca, C.L.: Spectroscopic test of the symmetrization postulate for spin-0 nuclei. Phys. Rev. Lett. 76, 2844–2847 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    Kaplan, I.G.: Method for finding allowed multiplets in calculation of many-electron systems. Sov. Phys. JETP 24, 114–119 (1967) ADSGoogle Scholar
  10. 10.
    Kaplan, I.G., Rodimova, O.B.: Group theoretical classification of states of molecular systems with definite states of its constituent parts. Int. J. Quant. Chem. 10, 690–714 (1976) CrossRefGoogle Scholar
  11. 11.
    Kaplan, I.G.: Symmetry of Many-Electron Systems. Academic Press, New York (1975) Google Scholar
  12. 12.
    Girardeau, M.D.: Formulation of the many-body problem for composite particles. J. Math. Phys. 4, 1096–1116 (1963) MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Girardeau, M.D.: Second-quantization representation for systems of atoms, nuclei, and electrons. Phys. Rev. Lett. 27, 1416–1419 (1971) ADSCrossRefGoogle Scholar
  14. 14.
    Gilbert, J.D.: Second-quantized representation for a model system with composite particles. J. Math. Phys. 18, 791–806 (1977) ADSCrossRefGoogle Scholar
  15. 15.
    Law, C.K.: Quantum entanglement as an interpretation of bosonic character in composite two-particle systems. Phys. Rev. A 71, 034306 (2005) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Sancho, P.: Compositeness effects, Pauli’s principle and entanglement. J. Phys. A, Math. Gen. 39, 12525–12537 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Schrieffer, J.R.: Theory of Superconductivity. Addison-Wesley, Redwood City (1988) Google Scholar
  18. 18.
    Zeldovich, Ya.B.: The number of elementary baryons and the universal baryons repulsion hypothesis. Sov. Phys. JETP 10, 403 (1960) Google Scholar
  19. 19.
    Huzinaga, S., McWilliams, D., Cantu, A.A.: Projection operators in Hartree-Fock theory. Adv. Quantum Chem. 7, 187–220 (1973) ADSCrossRefGoogle Scholar
  20. 20.
    Pascual, J.L., Barros, N., Barandiarán, Z., Seijo, L.: Improved embedding ab initio model potentials for embedded cluster calculations. J. Phys. Chem. A 113, 12454–12460 (2009) CrossRefGoogle Scholar
  21. 21.
    Gutowski, M., Piela, L.: Interpretation of the Hartree-Fock interaction energy between closed-shell systems. Mol. Phys. 64, 337–355 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    Rajchel, Ł., Zuchowski, P.S., Szczesńiak, M.M., Chałasiński, G.: Derivation of the supermolecular interaction energy from the monomer densities in the density functional theory. Chem. Phys. Lett. 486, 160–165 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    Cavalcanti, D., Malard, L.M., Matinaga, F.M., Terra Cunha, M.O., França Santos, M.: Useful entanglement from the Pauli principle. Phys. Rev. B 76, 113304 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 867–942 (2009) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  26. 26.
    Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555–563 (1935) ADSCrossRefGoogle Scholar
  27. 27.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2000) Google Scholar
  29. 29.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990) MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731–734 (1990) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Hilborn, R.C., Tino, G.M. (eds.): Spin-Statistics Connection and Commutation Relations. AIP Conf. Proc., vol. 545. AIP, Melville (2000) Google Scholar
  32. 32.
    Greenberg, O.W., Mohapatra, R.N.: Phemenology of small violations of Fermi and Bose statistics. Phys. Rev. D 39, 2032–2038 (1989) ADSCrossRefGoogle Scholar
  33. 33.
    Okun, L.B.: Tests of electric charge conservation and the Pauli principle. Sov. Phys. Usp. 32, 543–547 (1989) ADSCrossRefGoogle Scholar
  34. 34.
    Ignatiev, A.Y.: X rays test of the Pauli exclusion principle. Radiat. Phys. Chem. 75, 2090–2096 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    VIP Collaboration: (2005)
  36. 36.
    Curceanu, C. (Petrascu), et al.: Experimental tests of quantum mechanics—Pauli exclusion principle violation (the VIP experiment) and future perspective. Int. J. Quantum Inf. 9, 145–154 (2011) CrossRefGoogle Scholar
  37. 37.
    Curceanu, C. (Petrascu), et al.: New experimental limit on the Pauli exclusion principle violation by electrons-the VIP experiment. Found. Phys. 41, 282–287 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    Elliott, S.R., LaRoque, B.H., Gehman, V.M., Kidd, M.F., Chen, M.: An improved limit on Pauli-exclusion-principle forbidden atomic transitions. Found. Phys. 42, 1015–1030 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    Ignatiev, A.Yu., Kuzmin, V.A.: Is the weak violation of the Pauli exclusion principle possible? Sov. J. Nucl. Phys. 461, 786 (1987) Google Scholar
  40. 40.
    Greenberg, O.W., Mohapatra, R.N.: Local quantum field theory of possible violation of the Pauli principle. Phys. Rev. Lett. 59, 2507–2510 (1987) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Pauli, W.: Nobel Lecture. In: Nobel Lectures, Physics, pp. 1942–1962. Elsevier, Amsterdam (1964) Google Scholar
  42. 42.
    Pauli, W.: The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940) ADSCrossRefGoogle Scholar
  43. 43.
    Green, H.S.: A generalized method of field quantization. Phys. Rev. 90, 270–273 (1953) ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Volkov, D.V.: On the quantization of half-integer spin fields. Sov. Phys. JETP 9, 1107–1111 (1959) zbMATHGoogle Scholar
  45. 45.
    Ohnuki, Y., Kamefuchi, S.: Quantum Field Theory and Parastatistics. Springer, Berlin (1982) CrossRefzbMATHGoogle Scholar
  46. 46.
    Duck, I., Sudarshan, E.C.G.: Pauli and the Spin-Statistics Theorem. World Scientific, Singapore (1997) zbMATHGoogle Scholar
  47. 47.
    Wightman, A.S.: Pauli and the spin-statistics theorem. Am. J. Phys. 67, 742 (1999) ADSCrossRefGoogle Scholar
  48. 48.
    Berry, M., Robbins, J.: Quantum indistinguishability: spin-statistics without relativity or field theory? In: Hilborn, R.C., Tino, G.M. (eds.) Spin-Statistics Connection and Commutation Relations. AIP Conf. Proc., vol. 545, pp. 3–15. AIP, Melville (2000) Google Scholar
  49. 49.
    Chernikov, N.A.: The Fock representation of the Duffin-Kemmer algebra. Acta Phys. Pol. 21, 52–60 (1962) MathSciNetGoogle Scholar
  50. 50.
    Greenberg, O.W.: Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett. 13, 598–602 (1964) ADSCrossRefGoogle Scholar
  51. 51.
    Govorkov, A.B.: Parastatistics and internal symmetry. Sov. J. Part. Nucl. 14, 520–537 (1983) MathSciNetGoogle Scholar
  52. 52.
    Kaplan, I.G.: Statistics of molecular excitons and magnons for large concentration. Theor. Math. Phys. 27, 254–261 (1976) CrossRefGoogle Scholar
  53. 53.
    Avdyugin, A.N., Zavorotnev, Yu.D., Ovander, L.N.: Polaritons in highly excited crystals. Sov. Phys., Solid State 25, 1437–1438 (1983) Google Scholar
  54. 54.
    Pushkarov, D.I.: On the defecton statistics in quantum crystals. Phys. Status Solidi B, Basic Solid State Phys. 133, 525–531 (1986) ADSCrossRefGoogle Scholar
  55. 55.
    Nguen, A., Hoang, N.C.: An approach to the many-exciton system. J. Phys. Condens. Matter 2, 4127–4136 (1990) ADSCrossRefGoogle Scholar
  56. 56.
    Kaplan, I.G., Navarro, O.: Charge transfer and the statistics of holons in periodical lattice. J. Phys. Condens. Matter 11, 6187–6195 (1999) ADSCrossRefGoogle Scholar
  57. 57.
    Kaplan, I.G., Navarro, O.: Statistic and properties of coupled hole pairs in superconducting ceramics. Physica C, Supercond. 341(348), 217–220 (2000) CrossRefGoogle Scholar
  58. 58.
    Kaplan, I.G.: Pauli spin-statistics theorem and statistics of quasiparticles in a periodical lattice. In: Hilborn, R.C., Tino, G.M. (eds.) Spin-Statistics Connection and Commutation Relations. AIP Conf. Proc., vol. 545, pp. 72–78. AIP, Melville (2000) Google Scholar
  59. 59.
    Kaplan, I.G.: The Pauli exclusion principle, spin-statistics connection, and permutation symmetry of many-particles wave functions. In: Brandas, E.J., Kryachko, E.S. (eds.) Fundamental World of Quantum Chemistry, vol. 1, pp. 183–220. Kluwer, Dordrecht (2003) CrossRefGoogle Scholar
  60. 60.
    Kaplan, I.G.: Symmetry postulate and its foundation in quantum mechanics. In: Man’ko, V.I. (ed.) Group Theoretical Methods in Physics, vol. 1, pp. 175–183. Nauka, Moscow (1980) Google Scholar
  61. 61.
    Kaplan, I.G.: Exclusion principle and indistinguishability of identical particles in quantum mechanics. J. Mol. Struct. 272, 187–196 (1992) ADSCrossRefGoogle Scholar
  62. 62.
    Kaplan, I.G.: Is the Pauli exclusive principle an independent quantum mechanical postulate? Int. J. Quant. Chem. 89, 268–276 (2002) CrossRefGoogle Scholar
  63. 63.
    Pauli, W.: Remarks on the history of the exclusion principle. Science 103, 213–215 (1946) ADSCrossRefGoogle Scholar
  64. 64.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958) zbMATHGoogle Scholar
  65. 65.
    Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1955) zbMATHGoogle Scholar
  66. 66.
    Messiah, A.M.: Quantum Mechanics. North-Holland, Amsterdam (1962) zbMATHGoogle Scholar
  67. 67.
    Messiah, A.M., Greenberg, O.W.: Symmetrization postulate and its experimental foundation. Phys. Rev. 136, B248–B267 (1964) MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Girardeau, M.D.: Permutation symmetry of many-particle wave function. Phys. Rev. 139, B500–B508 (1965) MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Corson, E.M.: Perturbation Methods in Quantum Mechanics of Electron Systems. University Press, Glasgow (1951) zbMATHGoogle Scholar
  70. 70.
    Landau, L.D., Lifschitz, E.M.: Quantum Mechanics. Addison-Wesley, Reading (1965) zbMATHGoogle Scholar
  71. 71.
    Blokhintzev, D.I.: Principles of Quantum Mechanics. Allyn and Bacon, Boston (1964) CrossRefGoogle Scholar
  72. 72.
    Kaplan, I.G.: The exclusion principle and indistinguishability of identical particles in quantum mechanics. Sov. Phys. Usp. 18, 988–994 (1976) ADSCrossRefGoogle Scholar
  73. 73.
    Canright, G.S., Girvin, S.M.: Fractional statistics: quantum possibilities in two dimensions. Science 247, 1197–1205 (1990) ADSCrossRefGoogle Scholar
  74. 74.
    Girardeau, M.D.: Proof of the symmetrization postulate. J. Math. Phys. 10, 1302–1304 (1969) MathSciNetADSCrossRefzbMATHGoogle Scholar
  75. 75.
    von Neumann, J.V.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955). English translation by R.T. Beyer zbMATHGoogle Scholar
  76. 76.
    Fock, V.A.: Lectures on Quantum Mechanics. Manuscript, B31, F-750, Library of Physical Faculty, St Petersburg State University (1937) Google Scholar
  77. 77.
    Kaplan, I.G.: Problems in DFT with the total spin and degenerate states. Int. J. Quant. Chem. 107, 2595–2603 (2007) ADSCrossRefGoogle Scholar
  78. 78.
    Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Row Peterson, New York (1961) Google Scholar
  79. 79.
    Kaplan, I.G., Rodimova, O.B.: Matrix elements of general configuration of nonorthogonal orbital in state with definite spin. Int. J. Quant. Chem. 7, 1203–1220 (1973) CrossRefGoogle Scholar
  80. 80.
    March, N.H., Young, W.H., Sampanthar, S.: The Many-Body Problem in Quantum Mechanics. Cambridge University Press, Cambridge (1967) Google Scholar
  81. 81.
    Hamermesh, M.: Group Theory. Addison-Wesley, Reading (1962) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUNAMMéxicoMexico

Personalised recommendations