Foundations of Physics

, Volume 43, Issue 9, pp 1153–1169 | Cite as

The Scope and Generality of Bell’s Theorem

Article

Abstract

I present what might seem to be a local, deterministic model of the EPR-Bohm experiment, inspired by recent work by Joy Christian, that appears at first blush to be in tension with Bell-type theorems. I argue that the model ultimately fails to do what a hidden variable theory needs to do, but that it is interesting nonetheless because the way it fails helps clarify the scope and generality of Bell-type theorems. I formulate and prove a minor proposition that makes explicit how Bell-type theorems rule out models of the sort I describe here.

Keywords

Bell’s theorem Hidden variable theory Joy Christian 

References

  1. 1.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964). Also published in [4] Google Scholar
  2. 2.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966). Also published in [4] ADSCrossRefMATHGoogle Scholar
  3. 3.
    Bell, J.S.: Bertlmann’s socks and the nature of reality. Ref.TH.2926-CERN (1980). Also published in [4] Google Scholar
  4. 4.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, New York (1987) MATHGoogle Scholar
  5. 5.
    Christian, J.: Disproof of Bell’s theorem by Clifford algebra valued local variables (2007). arXiv:quant-ph/0703179
  6. 6.
    Christian, J.: Disproof of Bell’s theorem: Further consolidations (2007). arXiv:0707.1333 [quant-ph]
  7. 7.
    Christian, J.: Disproof of Bell’s theorem: Reply to critics (2007). arXiv:quant-ph/0703244
  8. 8.
    Christian, J.: Can Bell’s prescription for physical reality be considered complete? (2008). arXiv:0806.3078 [quant-ph]
  9. 9.
    Christian, J.: Disproofs of Bell, GHZ, and Hardy type theorems and the illusion of entanglement (2009). arXiv:0904.4259 [quant-ph]
  10. 10.
    Christian, J.: Failure of Bell’s theorem and the local causality of the entangled photons (2010). arXiv:1005.4932v2 [quant-ph]
  11. 11.
    Christian, J.: Disproof of Bell’s theorem (2011). arXiv:1103.1879v1 [quant-ph]
  12. 12.
    Christian, J.: What really sets the upper bound on quantum correlations? (2011). arXiv:1101.1958v1 [quant-ph]
  13. 13.
    Christian, J.: Disproof of Bell’s Theorem: Illuminating the Illusion of Entanglement. Brown Walker Press, Boca Raton (2012) Google Scholar
  14. 14.
    Christian, J.: Whither all the scope and generality of Bell’s theorem? (2013). arXiv:2013.1653 [physics.gen-ph]
  15. 15.
    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D, Part. Fields 10(2), 526–535 (1974) ADSCrossRefGoogle Scholar
  16. 16.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969) ADSCrossRefGoogle Scholar
  17. 17.
    Grangier, P.: “Disproof of Bell’s theorem”: more critics (2007). arXiv:0707.2223 [quant-ph]
  18. 18.
    Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Noûs 18(4), 569–589 (1984) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jarrett, J.P.: Bell’s theorem: a guide to the implications. In: Cushing, J.T., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory. University of Notre Dame Press, Notre Dame (1989) Google Scholar
  20. 20.
    Malament, D.B.: Notes on Bell’s theorem (2006). Available at http://www.lps.uci.edu/malament/prob-determ/PDnotesBell.pdf
  21. 21.
    Malament, D.B.: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. University of Chicago Press, Chicago (2012) CrossRefMATHGoogle Scholar
  22. 22.
    Moldoveanu, F.: Disproof of Joy Christian’s “Disproof of Bell’s theorem” (2011). arXiv:1109.0535 [quant-ph]
  23. 23.
    Penrose, R., Rindler, W.: Spinors and Space-Time (2 Volumes). Cambridge University Press, New York (1987) Google Scholar
  24. 24.
    Pitowsky, I.: Quantum Probability—Quantum Logic. Springer, New York (1989) MATHGoogle Scholar
  25. 25.
    Shimony, A.: Bell’s theorem. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2009). Available at http://plato.stanford.edu/archives/sum2009/entries/bell-theorem/ Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations