# Are Collapse Models Testable via Flavor Oscillations?

- 229 Downloads
- 11 Citations

## Abstract

Collapse models predict the spontaneous collapse of the wave function, in order to avoid the emergence of macroscopic superpositions. In their mass-dependent formulation, they claim that the collapse of any system’s wave function depends on its mass. Neutral *K*, *D*, *B* mesons are oscillating systems that are given by Nature as superposition of two distinct mass eigenstates. Thus they are unique laboratory for testing collapse models that are sensitive to the mass. In this paper we derive—for the single mesons and bipartite entangled mesons—the effect of the mass-proportional CSL (Continuous Spontaneous Localization) collapse model on the dynamics on neutral mesons. We compare the theoretical prediction with experimental data from different accelerator facilities.

## Keywords

Collapse models Meson–antimeson systems## Notes

### Acknowledgements

All authors would like to thank the COST Action MP1006 “Fundamental Problems in Quantum Physics”. The project is partly funded from the SoMoPro programme. Research of B.C.H. leading to these results has received a financial contribution from the European Community within the Seventh Framework Programme (FP/2007-2013) under Grant Agreement No. 229603. The research is also co-financed by the South Moravian Region. A.B., C.C. and S.D. wish to thank S.L. Adler for many useful and enjoyable conversations on this topic. They also acknowledges partial financial support from MIUR (PRIN 2008), INFN and the John Templeton Foundation project ‘Quantum Physics and the Nature of Reality’. B.C.H. acknowledges the Austrian Science Fund (FWF) project P21947N16.

## References

- 1.Gell-Mann, M., Pais, A.: Behaviour of neutral particles under charge conjugation. Phys. Rev.
**97**, 1387 (1955) MathSciNetADSCrossRefGoogle Scholar - 2.Pais, A., Piccioni, O.: Note on the decay and absorption of the
*θ*0. Phys. Rev.**100**, 1487 (1955) ADSCrossRefGoogle Scholar - 3.Hiesmayr, B.C.: Nonlocality and entanglement in a strange system. Eur. Phys. J. C
**50**, 73 (2007) ADSCrossRefGoogle Scholar - 4.Bertlmann, R.A., Hiesmayr, B.C.: Kaonic Qubits, Quantum Inform. Proces.
**5**, 421 (2006) zbMATHCrossRefGoogle Scholar - 5.Bigi, I.I.: Flavour dynamics & CP violation in the standard model: a crucial past—and an essential future. In: Lectures Given at the 2006 CERN Summer School of High Energy Physics, Aronsborg, Sweden (2006). arXiv:hep-ph/0701273 Google Scholar
- 6.Genovese, M.: On the distances between entangled pseudoscalar meson states. Eur. Phys. J. C
**55**, 683 (2008) ADSCrossRefGoogle Scholar - 7.Courbage, M.M., Durt, T.T., Saberi Fathi, S.M.: A new formalism for the estimation of the CP-violation parameters. arXiv:0907.2514
- 8.Benatti, F., Floreanini, R.: Dissipative neutrino oscillations in randomly fluctuating matter. Phys. Rev. D
**71**, 013003 (2005) ADSCrossRefGoogle Scholar - 9.Benatti, F., Floreanini, R., Romano, R.: Neutral kaons in random media. Phys. Rev. D
**68**, 094007 (2003) ADSCrossRefGoogle Scholar - 10.Beuthe, M.: Oscillations of neutrinos and mesons in quantum field theory. Phys. Rep.
**375**, 105 (2003) MathSciNetADSCrossRefGoogle Scholar - 11.Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1986) Google Scholar
- 12.Adler, S.L., Bassi, A.: Is quantum theory exact? Science
**325**, 275 (2009) CrossRefGoogle Scholar - 13.Weinberg, S.: Collapse of the state vector. Phys. Rev. A
**85**, 062116 (2012) ADSCrossRefGoogle Scholar - 14.Leggett, A.J.: How far do EPR-Bell experiments constrain physical collapse theories? J. Phys. A, Math. Theor.
**40**, 3141 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar - 15.Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C60 molecules. Nature
**401**, 680 (1999) ADSCrossRefGoogle Scholar - 16.Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Decoherence of matter waves by thermal emission of radiation. Nature
**427**, 711 (2004) ADSCrossRefGoogle Scholar - 17.Gerlich, S., Hackermüller, L., Hornberger, K., Stibor, A., Ulbricht, H., Gring, M., Goldfarb, F., Savas, T., Müri, M., Mayor, M., Arndt, M.: A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules. Nat. Phys.
**3**, 711 (2007) CrossRefGoogle Scholar - 18.Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nat. Commun.
**2**, 263 (2011) CrossRefGoogle Scholar - 19.Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett.
**91**, 130401 (2003) MathSciNetADSCrossRefGoogle Scholar - 20.Romero-Isart, O.: Quantum superposition of massive objects and collapse models. Phys. Rev. A
**84**, 052121 (2011) ADSCrossRefGoogle Scholar - 21.Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**34**, 470 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar - 22.Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys.
**25**, 5 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar - 23.Fu, Q.: Spontaneous radiation of free electrons in a nonrelativistic collapse model. Phys. Rev. A
**56**, 1806 (1997) ADSCrossRefGoogle Scholar - 24.Ghirardi, G.C., Pearle, P., Rimini, A.: Markov process in Hilbert space and continuous spontaneous factorization of systems of identical particles. Phys. Rev. A
**42**, 78 (1990) MathSciNetADSCrossRefGoogle Scholar - 25.Adler, S.L.: A density tensor hierarchy for open system dynamics: retrieving the noise. J. Phys. A
**40**, 2935 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar - 26.Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep.
**379**, 257 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar - 27.Adler, S.L., Bassi, A.: Collapse models with non-white noises. J. Phys. A, Math. Theor.
**40**, 15083 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar - 28.Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
- 29.Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D
**13**, 857 (1976) MathSciNetADSCrossRefGoogle Scholar - 30.Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A
**39**, 2277 (1989) ADSCrossRefGoogle Scholar - 31.Pearle, P.: Open systems and measurement. In: Breuer, H.-P., Petruccione, F. (eds.) Relativistic Quantum Theory. Lecture Notes in Physics, vol. 526. Springer, Berlin (1999) Google Scholar
- 32.Diósi, L.: Quantum stochastic processes as models for state vector reduction. J. Phys. A, Math. Gen.
**21**, 2885 (1988) ADSzbMATHCrossRefGoogle Scholar - 33.Diósi, L.: Continuous quantum measurement and its formalism. Phys. Lett. A
**129**, 419 (1988) MathSciNetADSCrossRefGoogle Scholar - 34.Christian, J.: Testing gravity-driven collapse of the wave function via cosmogenic neutrinos. Phys. Rev. Lett.
**95**, 160403 (2005) ADSCrossRefGoogle Scholar - 35.Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit.
**28**, 581 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar - 36.Penrose, R.: Wave function collapse as a real gravitational effect. In: Fokas, A., et al. (eds.) Mathematical Physics 2000, Imperial College, London (2000) Google Scholar
- 37.Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A
**40**, 1165 (1989) ADSCrossRefGoogle Scholar - 38.Ghirardi, G.C., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A
**42**, 1057 (1990) ADSCrossRefGoogle Scholar - 39.Sakurai, J.J., Tuan, S.F.: Modern Quantum Mechanics. Addison-Wesley, Reading (1994) Google Scholar
- 40.Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C.: Decoherence of entangled kaons and its connection to entanglement measures. Phys. Rev. A
**68**, 012111 (2003) ADSCrossRefGoogle Scholar - 41.Ambrosino, F., et al. (KLOE Collaboration): First observation of quantum interference in the process Φ⟶
*K*_{S}*K*_{L}⟶*π*^{+}*π*^{−}*π*^{+}*π*−: a test of quantum mechanics and CPT symmetry. Phys. Lett. B**642**, 315 (2006) ADSCrossRefGoogle Scholar - 42.Di Domenico, A., (KLOE Collaboration): CPT symmetry and quantum mechanics tests in the neutral kaon system at KLOE. Found. Phys.
**40**, 852 (2010) ADSzbMATHCrossRefGoogle Scholar - 43.Di Domenico, A.: Search for CPT violation and decoherence effects in the neutral kaon system. J. Phys. Conf. Ser.
**171**, 012008 (2009) ADSCrossRefGoogle Scholar - 44.Amelino-Camelia, G., et al.: Physics with the KLOE-2 experiment at the upgraded DAPHNE. Eur. Phys. J. C
**68**(3–4), 619 (2010) ADSCrossRefGoogle Scholar - 45.Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys.
**48**, 119 (1976) MathSciNetADSzbMATHCrossRefGoogle Scholar - 46.Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys.
**17**, 821 (1976) MathSciNetADSCrossRefGoogle Scholar - 47.Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: An open–quantum–system formulation of particle decay. Phys. Rev. A
**73**, 054101 (2006) ADSCrossRefGoogle Scholar - 48.Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) zbMATHGoogle Scholar
- 49.Richter, G.: University, stability of nonlocal quantum correlations in neutral
*B*-meson systems. PhD thesis at the Vienna Technical Google Scholar - 50.Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Quantum mechanics, Furry’s hypothesis and a measure of decoherence. Phys. Rev. D
**60**, 114032 (1999) ADSCrossRefGoogle Scholar - 51.Apostolakis, A., et al. (CPLEAR Collaboration): An EPR experiment testing the non-separability of the K0K0 wave function. Phys. Lett. B
**422**, 339 (1998) ADSCrossRefGoogle Scholar - 52.Nakamura, K., et al. (Particle Data Group): Rev. Particle Phys., J. Phys. G
**37**, 075021 (2010) CrossRefGoogle Scholar - 53.Go, A., Bay, A., et al. (for the Belle Collaboration): Measurement of EPR-type flavour entanglement in Upsilon(4S)\(\longrightarrow B^{0} \bar{B}^{0}\) decays. Phys. Rev. Lett.
**99**, 131802 (2007) ADSCrossRefGoogle Scholar - 54.Bertlmann, R.A., Grimus, W.: A model for decoherence of entangled beauty. Phys. Rev. D
**64**, 056004 (2001) ADSCrossRefGoogle Scholar - 55.Yabsley, B.D.: Quantum entanglement at the psi(3770) and Upsilon (4S). In: Flavor Physics & CP Violation Conference, Taipei (2008) Google Scholar
- 56.Mavromatos, N.E., Sarkar, S.: Liouville decoherence in a model of flavour oscillations in the presence of dark energy. Phys. Rev. D
**72**, 065016 (2005) ADSCrossRefGoogle Scholar - 57.Bahrami, M., Donadi, S., Bassi, A., Ferialdi, L., Curceanu, C., Di Domenico, A., Hiesmayr, B.C.: Testing collapse models with neutrinos, mesons and chiral molecules. Eur. Phys. Lett. in preparation Google Scholar
- 58.Donadi, S., Bassi, A., Ferialdi, L., Curceanu, C.: The effect of spontaneous collapses on neutrino oscillations (2012). arXiv:1207.5997
- 59.Capolupo, A., Ji, C.-R., Mishchenko, Y., Vitiello, G.: Phenomenology of flavor oscillations with non-perturbative effects from quantum field theory. Phys. Lett. B
**594**, 135 (2004) ADSCrossRefGoogle Scholar - 60.Hiesmayr, B.C., Di Domenico, A., Curceanu, C., Gabriel, A., Huber, M., Larsson, J.-A., Moskal, P.: Revealing Bell’s nonlocality for unstable systems in high energy physics. Eur. Phys. J. C
**72**, 1856 (2012) ADSCrossRefGoogle Scholar - 61.Hiesmayr, B.C.: A generalized Bell inequality and decoherence for the neutral kaon system. Found. Phys. Lett.
**14**, 312 (2001) CrossRefGoogle Scholar - 62.Bertlmann, R.A., Hiesmayr, B.C.: Bell inequalities for entangled kaons and their unitary time evolution. Phys. Rev. A
**63**, 062112 (2001) ADSCrossRefGoogle Scholar - 63.Genovese, M.: About entanglement properties of kaons and tests of hidden variables models. Phys. Rev. A
**69**, 022103 (2004) ADSCrossRefGoogle Scholar - 64.Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Bell inequality and CP violation in the neutral kaon system. Phys. Lett. A
**289**, 21 (2001) ADSzbMATHCrossRefGoogle Scholar - 65.Bertlmann, R.A., Bramon, A., Garbarino, G., Hiesmayr, B.C.: Violation of a Bell inequality in particle physics experimentally verified? Phys. Lett. A
**332**, 355 (2004) ADSzbMATHCrossRefGoogle Scholar - 66.Bramon, A., Garbarino, G., Hiesmayr, B.C.: Active and passive quantum eraser for neutral kaons. Phys. Rev. A
**69**, 062111 (2004) ADSCrossRefGoogle Scholar - 67.Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantum marking and quantum erasure for neutral kaons. Phys. Rev. Lett.
**92**, 020405 (2004) ADSCrossRefGoogle Scholar - 68.Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantitative complementarity in two-path interferometry. Phys. Rev. A
**69**, 022112 (2004) ADSCrossRefGoogle Scholar - 69.Caban, P., Rembielinski, J., Smolinski, K.A., Walczak, Z., Wlodarczyk, M.: An open quantum system approach to EPR correlations in K0–K0 systems. Phys. Lett. A
**357**, 6 (2006) ADSCrossRefGoogle Scholar - 70.Di Domenico, A., Gabriel, A., Hiesmayr, B.C., Hipp, F., Huber, M., Krizek, G., Mühlbacher, K., Radic, S., Spengler, C., Theussl, L.: Heisenberg’s uncertainty relation and Bell inequalities in high energy physics. Found. Phys.
**42**(6), 778 (2012) MathSciNetADSzbMATHCrossRefGoogle Scholar - 71.Hiesmayr, B.C., Huber, M.: Bohr’s complementarity relation and the violation of the CP symmetry in high energy physics. Phys. Lett. A
**372**, 3608 (2008) ADSzbMATHCrossRefGoogle Scholar