Foundations of Physics

, Volume 43, Issue 7, pp 813–844 | Cite as

Are Collapse Models Testable via Flavor Oscillations?

  • Sandro Donadi
  • Angelo Bassi
  • Catalina Curceanu
  • Antonio Di Domenico
  • Beatrix C. HiesmayrEmail author


Collapse models predict the spontaneous collapse of the wave function, in order to avoid the emergence of macroscopic superpositions. In their mass-dependent formulation, they claim that the collapse of any system’s wave function depends on its mass. Neutral K, D, B mesons are oscillating systems that are given by Nature as superposition of two distinct mass eigenstates. Thus they are unique laboratory for testing collapse models that are sensitive to the mass. In this paper we derive—for the single mesons and bipartite entangled mesons—the effect of the mass-proportional CSL (Continuous Spontaneous Localization) collapse model on the dynamics on neutral mesons. We compare the theoretical prediction with experimental data from different accelerator facilities.


Collapse models Meson–antimeson systems 



All authors would like to thank the COST Action MP1006 “Fundamental Problems in Quantum Physics”. The project is partly funded from the SoMoPro programme. Research of B.C.H. leading to these results has received a financial contribution from the European Community within the Seventh Framework Programme (FP/2007-2013) under Grant Agreement No. 229603. The research is also co-financed by the South Moravian Region. A.B., C.C. and S.D. wish to thank S.L. Adler for many useful and enjoyable conversations on this topic. They also acknowledges partial financial support from MIUR (PRIN 2008), INFN and the John Templeton Foundation project ‘Quantum Physics and the Nature of Reality’. B.C.H. acknowledges the Austrian Science Fund (FWF) project P21947N16.


  1. 1.
    Gell-Mann, M., Pais, A.: Behaviour of neutral particles under charge conjugation. Phys. Rev. 97, 1387 (1955) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Pais, A., Piccioni, O.: Note on the decay and absorption of the θ0. Phys. Rev. 100, 1487 (1955) ADSCrossRefGoogle Scholar
  3. 3.
    Hiesmayr, B.C.: Nonlocality and entanglement in a strange system. Eur. Phys. J. C 50, 73 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Bertlmann, R.A., Hiesmayr, B.C.: Kaonic Qubits, Quantum Inform. Proces. 5, 421 (2006) zbMATHCrossRefGoogle Scholar
  5. 5.
    Bigi, I.I.: Flavour dynamics & CP violation in the standard model: a crucial past—and an essential future. In: Lectures Given at the 2006 CERN Summer School of High Energy Physics, Aronsborg, Sweden (2006). arXiv:hep-ph/0701273 Google Scholar
  6. 6.
    Genovese, M.: On the distances between entangled pseudoscalar meson states. Eur. Phys. J. C 55, 683 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Courbage, M.M., Durt, T.T., Saberi Fathi, S.M.: A new formalism for the estimation of the CP-violation parameters. arXiv:0907.2514
  8. 8.
    Benatti, F., Floreanini, R.: Dissipative neutrino oscillations in randomly fluctuating matter. Phys. Rev. D 71, 013003 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    Benatti, F., Floreanini, R., Romano, R.: Neutral kaons in random media. Phys. Rev. D 68, 094007 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Beuthe, M.: Oscillations of neutrinos and mesons in quantum field theory. Phys. Rep. 375, 105 (2003) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1986) Google Scholar
  12. 12.
    Adler, S.L., Bassi, A.: Is quantum theory exact? Science 325, 275 (2009) CrossRefGoogle Scholar
  13. 13.
    Weinberg, S.: Collapse of the state vector. Phys. Rev. A 85, 062116 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    Leggett, A.J.: How far do EPR-Bell experiments constrain physical collapse theories? J. Phys. A, Math. Theor. 40, 3141 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C60 molecules. Nature 401, 680 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Decoherence of matter waves by thermal emission of radiation. Nature 427, 711 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    Gerlich, S., Hackermüller, L., Hornberger, K., Stibor, A., Ulbricht, H., Gring, M., Goldfarb, F., Savas, T., Müri, M., Mayor, M., Arndt, M.: A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules. Nat. Phys. 3, 711 (2007) CrossRefGoogle Scholar
  18. 18.
    Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011) CrossRefGoogle Scholar
  19. 19.
    Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Romero-Isart, O.: Quantum superposition of massive objects and collapse models. Phys. Rev. A 84, 052121 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Fu, Q.: Spontaneous radiation of free electrons in a nonrelativistic collapse model. Phys. Rev. A 56, 1806 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    Ghirardi, G.C., Pearle, P., Rimini, A.: Markov process in Hilbert space and continuous spontaneous factorization of systems of identical particles. Phys. Rev. A 42, 78 (1990) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Adler, S.L.: A density tensor hierarchy for open system dynamics: retrieving the noise. J. Phys. A 40, 2935 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Adler, S.L., Bassi, A.: Collapse models with non-white noises. J. Phys. A, Math. Theor. 40, 15083 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  29. 29.
    Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13, 857 (1976) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277 (1989) ADSCrossRefGoogle Scholar
  31. 31.
    Pearle, P.: Open systems and measurement. In: Breuer, H.-P., Petruccione, F. (eds.) Relativistic Quantum Theory. Lecture Notes in Physics, vol. 526. Springer, Berlin (1999) Google Scholar
  32. 32.
    Diósi, L.: Quantum stochastic processes as models for state vector reduction. J. Phys. A, Math. Gen. 21, 2885 (1988) ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Diósi, L.: Continuous quantum measurement and its formalism. Phys. Lett. A 129, 419 (1988) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Christian, J.: Testing gravity-driven collapse of the wave function via cosmogenic neutrinos. Phys. Rev. Lett. 95, 160403 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Penrose, R.: Wave function collapse as a real gravitational effect. In: Fokas, A., et al. (eds.) Mathematical Physics 2000, Imperial College, London (2000) Google Scholar
  37. 37.
    Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989) ADSCrossRefGoogle Scholar
  38. 38.
    Ghirardi, G.C., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057 (1990) ADSCrossRefGoogle Scholar
  39. 39.
    Sakurai, J.J., Tuan, S.F.: Modern Quantum Mechanics. Addison-Wesley, Reading (1994) Google Scholar
  40. 40.
    Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C.: Decoherence of entangled kaons and its connection to entanglement measures. Phys. Rev. A 68, 012111 (2003) ADSCrossRefGoogle Scholar
  41. 41.
    Ambrosino, F., et al. (KLOE Collaboration): First observation of quantum interference in the process Φ⟶K S K Lπ + π π + π−: a test of quantum mechanics and CPT symmetry. Phys. Lett. B 642, 315 (2006) ADSCrossRefGoogle Scholar
  42. 42.
    Di Domenico, A., (KLOE Collaboration): CPT symmetry and quantum mechanics tests in the neutral kaon system at KLOE. Found. Phys. 40, 852 (2010) ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Di Domenico, A.: Search for CPT violation and decoherence effects in the neutral kaon system. J. Phys. Conf. Ser. 171, 012008 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    Amelino-Camelia, G., et al.: Physics with the KLOE-2 experiment at the upgraded DAPHNE. Eur. Phys. J. C 68(3–4), 619 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: An open–quantum–system formulation of particle decay. Phys. Rev. A 73, 054101 (2006) ADSCrossRefGoogle Scholar
  48. 48.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) zbMATHGoogle Scholar
  49. 49.
    Richter, G.: University, stability of nonlocal quantum correlations in neutral B-meson systems. PhD thesis at the Vienna Technical Google Scholar
  50. 50.
    Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Quantum mechanics, Furry’s hypothesis and a measure of decoherence. Phys. Rev. D 60, 114032 (1999) ADSCrossRefGoogle Scholar
  51. 51.
    Apostolakis, A., et al. (CPLEAR Collaboration): An EPR experiment testing the non-separability of the K0K0 wave function. Phys. Lett. B 422, 339 (1998) ADSCrossRefGoogle Scholar
  52. 52.
    Nakamura, K., et al. (Particle Data Group): Rev. Particle Phys., J. Phys. G 37, 075021 (2010) CrossRefGoogle Scholar
  53. 53.
    Go, A., Bay, A., et al. (for the Belle Collaboration): Measurement of EPR-type flavour entanglement in Upsilon(4S)\(\longrightarrow B^{0} \bar{B}^{0}\) decays. Phys. Rev. Lett. 99, 131802 (2007) ADSCrossRefGoogle Scholar
  54. 54.
    Bertlmann, R.A., Grimus, W.: A model for decoherence of entangled beauty. Phys. Rev. D 64, 056004 (2001) ADSCrossRefGoogle Scholar
  55. 55.
    Yabsley, B.D.: Quantum entanglement at the psi(3770) and Upsilon (4S). In: Flavor Physics & CP Violation Conference, Taipei (2008) Google Scholar
  56. 56.
    Mavromatos, N.E., Sarkar, S.: Liouville decoherence in a model of flavour oscillations in the presence of dark energy. Phys. Rev. D 72, 065016 (2005) ADSCrossRefGoogle Scholar
  57. 57.
    Bahrami, M., Donadi, S., Bassi, A., Ferialdi, L., Curceanu, C., Di Domenico, A., Hiesmayr, B.C.: Testing collapse models with neutrinos, mesons and chiral molecules. Eur. Phys. Lett. in preparation Google Scholar
  58. 58.
    Donadi, S., Bassi, A., Ferialdi, L., Curceanu, C.: The effect of spontaneous collapses on neutrino oscillations (2012). arXiv:1207.5997
  59. 59.
    Capolupo, A., Ji, C.-R., Mishchenko, Y., Vitiello, G.: Phenomenology of flavor oscillations with non-perturbative effects from quantum field theory. Phys. Lett. B 594, 135 (2004) ADSCrossRefGoogle Scholar
  60. 60.
    Hiesmayr, B.C., Di Domenico, A., Curceanu, C., Gabriel, A., Huber, M., Larsson, J.-A., Moskal, P.: Revealing Bell’s nonlocality for unstable systems in high energy physics. Eur. Phys. J. C 72, 1856 (2012) ADSCrossRefGoogle Scholar
  61. 61.
    Hiesmayr, B.C.: A generalized Bell inequality and decoherence for the neutral kaon system. Found. Phys. Lett. 14, 312 (2001) CrossRefGoogle Scholar
  62. 62.
    Bertlmann, R.A., Hiesmayr, B.C.: Bell inequalities for entangled kaons and their unitary time evolution. Phys. Rev. A 63, 062112 (2001) ADSCrossRefGoogle Scholar
  63. 63.
    Genovese, M.: About entanglement properties of kaons and tests of hidden variables models. Phys. Rev. A 69, 022103 (2004) ADSCrossRefGoogle Scholar
  64. 64.
    Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Bell inequality and CP violation in the neutral kaon system. Phys. Lett. A 289, 21 (2001) ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    Bertlmann, R.A., Bramon, A., Garbarino, G., Hiesmayr, B.C.: Violation of a Bell inequality in particle physics experimentally verified? Phys. Lett. A 332, 355 (2004) ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    Bramon, A., Garbarino, G., Hiesmayr, B.C.: Active and passive quantum eraser for neutral kaons. Phys. Rev. A 69, 062111 (2004) ADSCrossRefGoogle Scholar
  67. 67.
    Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantum marking and quantum erasure for neutral kaons. Phys. Rev. Lett. 92, 020405 (2004) ADSCrossRefGoogle Scholar
  68. 68.
    Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantitative complementarity in two-path interferometry. Phys. Rev. A 69, 022112 (2004) ADSCrossRefGoogle Scholar
  69. 69.
    Caban, P., Rembielinski, J., Smolinski, K.A., Walczak, Z., Wlodarczyk, M.: An open quantum system approach to EPR correlations in K0–K0 systems. Phys. Lett. A 357, 6 (2006) ADSCrossRefGoogle Scholar
  70. 70.
    Di Domenico, A., Gabriel, A., Hiesmayr, B.C., Hipp, F., Huber, M., Krizek, G., Mühlbacher, K., Radic, S., Spengler, C., Theussl, L.: Heisenberg’s uncertainty relation and Bell inequalities in high energy physics. Found. Phys. 42(6), 778 (2012) MathSciNetADSzbMATHCrossRefGoogle Scholar
  71. 71.
    Hiesmayr, B.C., Huber, M.: Bohr’s complementarity relation and the violation of the CP symmetry in high energy physics. Phys. Lett. A 372, 3608 (2008) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sandro Donadi
    • 1
    • 2
  • Angelo Bassi
    • 1
    • 2
  • Catalina Curceanu
    • 3
  • Antonio Di Domenico
    • 4
    • 5
  • Beatrix C. Hiesmayr
    • 6
    • 7
    Email author
  1. 1.Dipartimento di FisicaUniversità di TriesteTriesteItaly
  2. 2.Istituto Nazionale di Fisica NucleareTriesteItaly
  3. 3.Laboratori Nazionali di Frascati dell’INFNFrascati (Rome)Italy
  4. 4.Dipartimento di FisicaSapienza Università di RomaRomeItaly
  5. 5.Istituto Nazionale di Fisica NucleareRomeItaly
  6. 6.Department of Theoretical Physics and AstrophysicsMasaryk UniversityBrnoCzech Republic
  7. 7.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations