Foundations of Physics

, Volume 43, Issue 6, pp 733–746 | Cite as

A Symmetrical Interpretation of the Klein-Gordon Equation

  • Michael B. Heaney


This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein’s bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies of the CI, and gives intuitive explanations of some previously mysterious quantum effects.


Foundations of quantum mechanics Foundations of relativistic quantum mechanics Klein-Gordon equation Quantum interpretation Symmetrical interpretation Time-symmetric interpretation Copenhagen interpretation Measurement problem Quantum mechanics axioms Quantum mechanics postulates Problem of time Zitterbewegung Block universe Einsteins bubble Retrocausality Causality Delayed choice Interaction free Renninger Teleportation Role of observer Advanced wavefunction Two-state vector formalism TSVF Wavefunction collapse Wave function collapse 



I thank Eleanor G. Rieffel, Kenneth B. Wharton, and Eugene D. Commins for many useful conversations.


  1. 1.
    Bacciagaluppi, G., Valentini, A.: Quantum theory at the crossroads: reconsidering the 1927 Solvay conference. arXiv:quant-ph/0609184v2, 24 October (2009)
  2. 2.
    Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983) Google Scholar
  3. 3.
    Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410–B1416 (1964) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Davidon, W.C.: Quantum physics of single systems. Il Nuovo Cimento B 36, 34–40 (1976) ADSCrossRefGoogle Scholar
  5. 5.
    Aharonov, Y., Gruss, E.Y.: Two-time interpretation of quantum mechanics. arXiv:quant-ph/0507269v1, 28 July (2005) and references therein
  6. 6.
    Aharonov, Y., Vaidman, L.: The two-state vector formalism: an updated review. In: Lect. Notes Phys., vol. 734, pp. 399–447. Springer, New York (2008) and references therein. arXiv:quant-ph/0105101 Google Scholar
  7. 7.
    Aharonov, Y., Popescu, S., Tollaksen, J.: A time-symmetric formulation of quantum mechanics. Phys. Today 63, 27–32 (2010) and references therein CrossRefGoogle Scholar
  8. 8.
    Aharonov, Y., Popescu, S., Tollaksen, J.: Consistent treatments of quantum mechanics Reply. Phys. Today 64, 9–10 (2011) CrossRefGoogle Scholar
  9. 9.
    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–687 (1986) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, New York (2002) zbMATHGoogle Scholar
  11. 11.
    Unruh, W.G.: Quantum measurement. Ann. N.Y. Acad. Sci. 48, 242–249 (1986) ADSCrossRefGoogle Scholar
  12. 12.
    Gell-Mann, M., Hartle, J.B.: Time symmetry and asymmetry in quantum mechanics and quantum cosmology. In: Halliwell, J.J., Perez-Mercader, J., Zurek, W. (eds.) Physical Origins of Time Asymmetry 1, pp. 311–345. Cambridge University Press, Cambridge (1994) Google Scholar
  13. 13.
    Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, Cambridge (1997) CrossRefGoogle Scholar
  14. 14.
    Wharton, K.B.: Time-symmetric quantum mechanics. Found. Phys. 37, 159–168 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Sutherland, R.I.: Density formalism for quantum theory. Found. Phys. 28, 1157–1190 (1998) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sutherland, R.I.: Causally symmetric Bohm model. studies in history and philosophy of science. Part B. Stud. Hist. Philos. Mod. Phys. 39, 782–805 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Griffiths, R.B.: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66, 062101 (2002). arXiv:quant-ph/0207015v1 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Omnés, R.: Localization of relativistic particles. J. Math. Phys. 38, 708–715 (1997) MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Blencowe, M.: The consistent histories interpretation of quantum fields in curved spacetime. Ann. Phys. 211, 87–111 (1991) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Hoyle, F., Narlikar, J.V.: Lectures on Cosmology and Action at a Distance Electrodynamics. World Scientific, New Jersey (1996) Google Scholar
  21. 21.
    Davies, P.C.W.: A quantum theory of Wheeler-Feynman electrodynamics. Proc. Camb. Philol. Soc. 68, 751–764 (1970) ADSCrossRefGoogle Scholar
  22. 22.
    Wharton, K.B.: A novel interpretation of the Klein-Gordon equation. Found. Phys. 40, 313–332 (2010). arXiv:0706.4075v3 MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, Vol. I. Wiley, New York (1977) Google Scholar
  24. 24.
    Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Pearson Education/Prentice Hall, New Jersey (2005) Google Scholar
  25. 25.
    Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Plenum, New York (1994) zbMATHCrossRefGoogle Scholar
  26. 26.
    Greiner, W.: Relativistic Quantum Mechanics: Wave Equations. Springer, New York (1990) zbMATHGoogle Scholar
  27. 27.
    Thaller, B.: Advanced Visual Quantum Mechanics. Springer, New York (2005) Google Scholar
  28. 28.
    Nikolić, H.: Quantum mechanics: myths and facts. Found. Phys. 37, 1563–1611 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics, Vol. III. Addison Wesley, Reading (1965) Google Scholar
  30. 30.
    Dirac, P.A.M.: Relativistic quantum mechanics. Proc. R. Soc. Lond. A 136, 453–464 (1932) ADSCrossRefGoogle Scholar
  31. 31.
    Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. 24, 418–428 (1930) Google Scholar
  32. 32.
    von Neumann, J.: Matematische Grundlagen der Quantenmechanik Springer, Berlin (1932). [English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1955)] Google Scholar
  33. 33.
    Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996) Google Scholar
  34. 34.
    Renninger, M.: Messungen ohne Störung des Messobjekts. Z. Phys. Hadrons Nucl. 158, 417–421 (1960) zbMATHCrossRefGoogle Scholar
  35. 35.
    Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993) ADSCrossRefGoogle Scholar
  36. 36.
    Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763–4766 (1995) ADSCrossRefGoogle Scholar
  37. 37.
    Wheeler, J.A.: The “past” and the “delayed-choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, San Francisco (1978) CrossRefGoogle Scholar
  38. 38.
    Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science 315, 966–968 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993) MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Barut, A.O., Bracken, A.J.: Zitterbewegung and the internal geometry of the electron. Phys. Rev. D 23, 2454–2463 (1981) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Palo AltoUSA

Personalised recommendations