Foundations of Physics

, Volume 43, Issue 5, pp 631–641 | Cite as

Derivation of the Dirac Equation by Conformal Differential Geometry

  • Enrico Santamato
  • Francesco De Martini


A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in closed form, by an ansatz solution that can be straightforwardly interpreted as the “quantum wave function” of the 4-spinor solution of Dirac’s equation. All quantum features arise from the subtle interplay between the conformal curvature acting on the particle as a potential and the particle motion which affects the geometric “pre-potential” associated to the conformal curvature itself. The theory, carried out here by assuming a Minkowski metric, can be easily extended to arbitrary space-time Riemann metric, e.g. the one adopted in the context of General Relativity. This novel theoretical scenario appears to be of general application and is expected to open a promising perspective in the modern endeavor aimed at the unification of the natural forces with gravitation.


Relativistic top Quantum spin Conformal geometry 



We thank dott. Paolo Aniello for useful suggestions.


  1. 1.
    Atre, M.V., Mukunda, N.: Classical particles with internal structure: general formalism and application to first-order internal spaces. J. Math. Phys. 27, 2908–2919 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Regge trajectories and the principle of maximum strength for strong interactions. Phys. Lett. 89B, 199–202 (1980) MathSciNetADSGoogle Scholar
  3. 3.
    Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Gauge Symmetries and Fibre Bundles: Applications to Particle Dynamics. Lecture Notes in Physics, vol. 188. Springer, Berlin (1983) zbMATHGoogle Scholar
  4. 4.
    Biedenharn, L.C., Dam, H.V., Marmo, G., Morandi, G., Mukunda, N., Samuel, J., Sudarshan, E.C.G.: Classical models for Regge trajectories. I. J. Mod. Phys. A 2, 1567–1589 (1987) ADSCrossRefGoogle Scholar
  5. 5.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166 (1983) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180 (1983) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Brown, L.M.: Two-component fermion theory. Phys. Rev. 111(3), 957–964 (1958) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Chew, G.F., Frautschi, S.C.: Regge trajectories and the principle of maximum strength for strong interactions. Phys. Rev. Lett. 8, 41–44 (1962) ADSCrossRefGoogle Scholar
  9. 9.
    Corben, H.C.: Classical and Quantum Theory of Spinning Particles. Holden-Day, San Francisco (1968) Google Scholar
  10. 10.
    Frenkel, J.: Die elektrodynamik des rotierenden elektrons. Z. Phys. 37, 243–262 (1926) ADSzbMATHGoogle Scholar
  11. 11.
    Hanson, A.J., Regge, T.: The relativistic spherical top. Ann. Phys. (NY) 87, 498–566 (1974) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Kiefer, C.: Quantum gravity: whence, whither? In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory and Gravity, pp. 1–13. Springer, Basel (2012). doi: 10.1007/978-3-0348-0043-3-1 CrossRefGoogle Scholar
  13. 13.
    Landau, L., Lifs̆itz, E., Pitaevsky, L.: Relativistic Quantum Theory. Pergamon Press, New York (1960) Google Scholar
  14. 14.
    Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 332 (1926) Google Scholar
  15. 15.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973) Google Scholar
  16. 16.
    Penrose, R.: Gravity and quantum mechanics. In: Gleiser, R., Kozameh, C., Moreschi, O. (eds.) General Relativity and Gravitation. IOP, Bristol (1993) Google Scholar
  17. 17.
    Penrose, R.: The Road to Reality. J. Cape, London (2004) Google Scholar
  18. 18.
    Penrose, R., Hawking, S.W.: The Nature of Space and Time. Princeton University Press, Princeton (1996) zbMATHGoogle Scholar
  19. 19.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2010) Google Scholar
  20. 20.
    Santamato, E.: Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces. Phys. Rev. D 29, 216 (1984) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Santamato, E.: Gauge-invariant statistical mechanics and average action principle for the Klein-Gordon particle in geometric quantum mechanics. Phys. Rev. D 32, 2615 (1985) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philol. Soc. 31, 555–563 (1935) ADSCrossRefGoogle Scholar
  23. 23.
    Santamato, E., De Martini, F.: Solving the quantum nonlocality enigma by Weyl’s conformal geometrodynamics (2012). arXiv:1203.0033v1 [quant-ph]
  24. 24.
    Schulman, L.S.: Relativistic spin: tops and wave equations. Nucl. Phys. B 18, 595–606 (1970) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Souriau, J.M.: Structure des systèmes dynamiques. Dunod Université, Paris (1969) Google Scholar
  26. 26.
    Sudarshan, E.C.G., Mukunda, N.: Classical Dynamics: A Modern Perspective. Wiley, New York (1974) zbMATHGoogle Scholar
  27. 27.
    Thomas, L.H.: The motion of the spinning electron. Nature 117, 514 (1926) ADSCrossRefGoogle Scholar
  28. 28.
    Wang, C.H.T.: New “phase” of quantum gravity. Philos. Trans. R. Soc. A 364(1849), 3375–3388 (2006). doi: 10.1098/rsta.2006.1904 ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Weyl, H.: Gravitation und elektrizität. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1, 465–480 (1918). Reprinted in: The Principles of Relativity, Dover, New York (1923) Google Scholar
  30. 30.
    Weyl, H.: Space, Time, Matter, 4th edn. Dover Publications, Inc., New York (1952) Google Scholar
  31. 31.
    Wheeler, J.A.: Geometrodynamics. Academic Press, New York (1962) zbMATHGoogle Scholar
  32. 32.
    Wilczek, F.: Treks of imagination. Science 307(5711), 852–853 (2005). doi: 10.1126/science.1106081 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze FisicheUniversità di Napoli “Federico II”NapoliItaly
  2. 2.Accademia Nazionale dei LinceiRomaItaly

Personalised recommendations