Advertisement

Foundations of Physics

, Volume 42, Issue 11, pp 1452–1468 | Cite as

Quantum Superpositions of the Speed of Light

  • Sabine HossenfelderEmail author
Article

Abstract

While it has often been proposed that, fundamentally, Lorentz-invariance is not respected in a quantum theory of gravity, it has been difficult to reconcile deviations from Lorentz-invariance with quantum field theory. The most commonly used mechanisms either break Lorentz-invariance explicitly or deform it at high energies. However, the former option is very tightly constrained by experiment already, the latter generically leads to problems with locality. We show here that there exists a third way to integrate deviations from Lorentz-invariance into quantum field theory that circumvents the problems of the other approaches. The way this is achieved is an extension of the standard model in which photons can have different speeds without singling out a preferred restframe, but only as long as they are in a quantum superposition. Once a measurement has been made, observables are subject to the laws of special relativity, and the process of measurement introduces a preferred frame. The speed of light can take on different values, both superluminal and subluminal (with respect to the usual value of the speed of light), without the need for Lorentz-invariance violating operators and without tachyons. We briefly discuss the relation to deformations of special relativity and phenomenological consequences.

Keywords

Lorentz-invariance Quantum gravity 

Notes

Acknowledgements

I thank Ben Koch, Jakub Mielczarek, Stefan Scherer and Lee Smolin for helpful feedback and discussions, and Sean Carroll for drawing my attention to Reference [31].

References

  1. 1.
    Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Relativ. 8, 5 (2005). arXiv:gr-qc/0502097 ADSGoogle Scholar
  2. 2.
    Kostelecky, V.A., Russell, N.: Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11 (2011). arXiv:0801.0287 [hep-ph] ADSCrossRefGoogle Scholar
  3. 3.
    Maccione, L., Liberati, S., Celotti, A., Kirk, J.G.: New constraints on Planck-scale Lorentz violation in QED from the Crab Nebula. J. Cosmol. Astropart. Phys. 0710, 013 (2007). arXiv:0707.2673 [astro-ph] ADSCrossRefGoogle Scholar
  4. 4.
    Amelino-Camelia, G.: Testable scenario for relativity with minimum-length. Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238 ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Kowalski-Glikman, J.: Observer independent quantum of mass. Phys. Lett. A 286, 391 (2001). arXiv:hep-th/0102098 MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Amelino-Camelia, G.: Doubly special relativity. Nature 418, 34 (2002). arXiv:gr-qc/0207049 ADSCrossRefGoogle Scholar
  7. 7.
    Magueijo, J., Smolin, L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67, 044017 (2003). arXiv:gr-qc/0207085 MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Amelino-Camelia, G.: Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002). gr-qc/0012051 MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Amelino-Camelia, G.: Doubly-special relativity: facts, myths and some key open issues. Symmetry 2, 230 (2010). arXiv:1003.3942 [gr-qc] CrossRefGoogle Scholar
  10. 10.
    Snyder, H.S.: Quantized Space-Time. Phys. Rev. 71, 38 (1947) ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Majid, S., Ruegg, H.: Bicrossproduct structure of kappa poincare group and non-commutative geometry. Phys. Lett. B 334, 348–354 (1994). hep-th/9405107 MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Kowalski-Glikman, J., Nowak, S.: Doubly special relativity and de sitter space. Class. Quantum Gravity 20, 4799–4816 (2003). hep-th/0304101 MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Amelino-Camelia, G., Smolin, L., Starodubtsev, A.: Quantum symmetry, the cosmological constant and Planck scale phenomenology. Class. Quantum Gravity 21, 3095 (2004). arXiv:hep-th/0306134 MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Smolin, L.: Could deformed special relativity naturally arise from the semiclassical limit of quantum gravity? (2008). arXiv:0808.3765 [hep-th]
  15. 15.
    Kowalski-Glikman, J., Starodubtsev, A.: Effective particle kinematics from quantum gravity. Phys. Rev. D 78, 084039 (2008). arXiv:0808.2613 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Freidel, L., Kowalski-Glikman, J., Smolin, L.: 2+1 gravity and doubly special relativity. Phys. Rev. D 69, 044001 (2004). arXiv:hep-th/0307085 MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Bojowald, M.: Quantum geometry and quantum dynamics at the Planck scale. AIP Conf. Proc. 1196, 62 (2009). arXiv:0910.2936 [gr-qc] ADSCrossRefGoogle Scholar
  18. 18.
    Kowalski-Glikman, J.: Doubly special relativity: facts and prospects. In: Oriti, D. (ed.) Approaches to Quantum Gravity, pp. 493–508. gr-qc/0603022
  19. 19.
    Smolin, L.: Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity. arXiv:1004.0664 [gr-qc]
  20. 20.
    Hossenfelder, S.: The box-problem in deformed special relativity. arXiv:0912.0090 [gr-qc]
  21. 21.
    Hossenfelder, S.: Bounds on an energy-dependent and observer-independent speed of light from violations of locality. Phys. Rev. Lett. 104, 140402 (2010). arXiv:1004.0418 [hep-ph] ADSCrossRefGoogle Scholar
  22. 22.
    Jacob, U., Mercati, F., Amelino-Camelia, G., Piran, T.: Modifications to Lorentz invariant dispersion in relatively boosted frames. Phys. Rev. D 82, 084021 (2010). arXiv:1004.0575 [astro-ph.HE] ADSCrossRefGoogle Scholar
  23. 23.
    Amelino-Camelia, G., Matassa, M., Mercati, F., Rosati, G.: Taming nonlocality in theories with Planck-scale deformed Lorentz symmetry. Phys. Rev. Lett. 106, 071301 (2011). arXiv:1006.2126 [gr-qc] ADSCrossRefGoogle Scholar
  24. 24.
    Smolin, L.: On limitations of the extent of inertial frames in non-commutative relativistic spacetimes. arXiv:1007.0718 [gr-qc]
  25. 25.
    Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: The principle of relative locality. Phys. Rev. D 84, 084010 (2011). arXiv:1101.0931 [hep-th] ADSCrossRefGoogle Scholar
  26. 26.
    Hossenfelder, S.: Comments on nonlocality in deformed special relativity, in reply to arXiv:1004.0664 by Lee Smolin and arXiv:1004.0575 by Jacob et al. arXiv:1005.0535 [gr-qc]
  27. 27.
    Hossenfelder, S.: Reply to arXiv:1006.2126 by Giovanni Amelino-Camelia et al. arXiv:1006.4587 [gr-qc]
  28. 28.
    Hossenfelder, S.: Comment on arXiv:1007.0718 by Lee Smolin. arXiv:1008.1312 [gr-qc]
  29. 29.
    Friedman, J., Morris, M.S., Novikov, I.D., Echeverria, F., Klinkhammer, G., Thorne, K.S., Yurtsever, U.: Cauchy problem in space-times with closed timelike curves. Phys. Rev. D 42, 1915 (1990) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Visser, M.: The quantum physics of chronology protection. gr-qc/0204022
  31. 31.
    Geroch, R.: Faster than light? arXiv:1005.1614 [gr-qc]
  32. 32.
    Babichev, E., Mukhanov, V., Vikman, A.: k-Essence, superluminal propagation, causality and emergent geometry. J. High Energy Phys. 0802, 101 (2008). arXiv:0708.0561 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Thompson, R.T., Ford, L.H.: Spectral line broadening and angular blurring due to spacetime geometry fluctuations. Phys. Rev. D 74, 024012 (2006). gr-qc/0601137 ADSCrossRefGoogle Scholar
  34. 34.
    Goklu, E., Lammerzahl, C.: Metric fluctuations and the weak equivalence principle. Class. Quantum Gravity 25, 105012 (2008). arXiv:0801.4553 [gr-qc] MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.NORDITAStockholmSweden

Personalised recommendations