Foundations of Physics

, Volume 43, Issue 4, pp 533–547 | Cite as

Temporal Non-locality

  • Thomas FilkEmail author


In this article I investigate several possibilities to define the concept of “temporal non-locality” within the standard framework of quantum theory. In particular, I analyze the notions of “temporally non-local states”, “temporally non-local events” and “temporally non-local observables”. The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as “clock-representing states” are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.


Temporal non-locality Time Quantum mechanics Temporally non-local quantum states Temporally non-local measurements 


  1. 1.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Atmanspacher, H.: Categoreal and acategoreal representation of knowledge. Cogn. Syst. 3, 259–288 (1992) Google Scholar
  4. 4.
    Atmanspacher, H., Amann, A.: Positive-operator-valued-measures and projection-valued measures of noncommutative time operators. Int. J. Theor. Phys. 37, 629–650 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Atmanspacher, H., Römer, H., Walach, H.: Weak quantum theory: complementarity and entanglement in physics and beyond. Found. Phys. 32, 379–406 (2002) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Atmanspacher, H., Filk, T., Römer, H.: Quantum Zeno features of bistable perception. Biol. Cybern. 90, 33–40 (2004) zbMATHCrossRefGoogle Scholar
  7. 7.
    Atmanspacher, H., Filk, T., Römer, H.: Weak quantum theory: formal framework and selected applications. In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations—3, pp. 34–46. American Institute of Physics, New York (2006) Google Scholar
  8. 8.
    Atmanspacher, H., Bach, M., Filk, T., Kornmeier, J., Römer, H.: Cognitive time scales in a Necker-Zeno model for bistable perception. Open Cybern. Syst. J. 2, 234–251 (2008) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Atmanspacher, H., Filk, T.: A proposed test of temporal nonlocality in bistable perception. J. Math. Psychol. 54, 314–321 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bauer, M.: A time operator in quantum mechanics. Ann. Phys. 150(1), 1–21 (1983) ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Bauer, M.: A dynamical time operator in relativistic quantum mechanics. arXiv:0908.2789
  12. 12.
    Bell, J.S.: On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 38, 447–452 (1966) ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Blanchard, Ph., Jadczyk, A.: Time and events. Int. J. Theoret. Phys. 37 (1998) Google Scholar
  14. 14.
    Bohr, N.: Diskussion mit Einstein über erkenntnistheoretische Probleme in der Atomphysik. In: Atomphysik und menschliche Erkenntnis. Vieweg & Sohn, Braunschweig/Wiesbaden (1985) Google Scholar
  15. 15.
    Borsellino, A., de Marco, A., Alazetta, A., Rinesi, S., Bartolini, R.: Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik 10, 139–144 (1972) CrossRefGoogle Scholar
  16. 16.
    Brascamp, J.W., van Ee, R., Pestman, W.R., van den Berg, A.V.: Distributions of alternation rates in various forms of bistable perception. J. Vis. 5, 287–298 (2005) CrossRefGoogle Scholar
  17. 17.
    Dowker, F., Kent, A.: Properties of consistent histories. Phys. Rev. Lett. 75, 3038–3041 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    Eddington, A.S.: Space, Time and Gravitation. Cambridge University Press, Cambridge (1920) Google Scholar
  19. 19.
    Feil, D., Atmanspacher, H.: Acategorial states in a representational theory of mental processes. J. Conscious. Stud. 17(5/6), 72–101 (2010) Google Scholar
  20. 20.
    Filk, T.: Non-classical correlations in bistable perception? Axiomathes 21(2), 221–232 (2011) CrossRefGoogle Scholar
  21. 21.
    Filk, T., von Müller, A.: Quantum physics and consciousness: the quest for a common, modified conceptual foundation. Mind Matter 7(1), 59–79 (2009) Google Scholar
  22. 22.
    Filk, T., von Müller, A.: A categorical framework for quantum theory. Ann. Phys. 522, 783–801 (2010) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gebser, J.: The Ever-Present Origin. Ohio University Press, Columbus (1986) Google Scholar
  24. 24.
    Goto, T., Yamaguchi, K., Sudo, N.: On the time operator in quantum mechanics. Prog. Theor. Phys. 66(5), 1525–1538 (1981) MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984) ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Isham, C.: Quantum logic and the histories approach to quantum theory. J. Math. Phys. 35, 2157–2185 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Haag, R.: Objects, events and localization. In: Blanchard, P., Jadczyk, A. (eds.) Quantum Future, pp. 58–79. Springer, Berlin (1999) Google Scholar
  28. 28.
    Haag, R.: Quantum theory and the division of the world. Mind Matter 2(2), 53–66 (2004) Google Scholar
  29. 29.
    Hiley, B.: Towards a dynamics of moments: the role of algebraic deformation and inequivalent vacuum states. In: Bowden, K.G. (ed.) Correlations. Proc. ANPA, vol. 23, pp. 104–134 (2001) Google Scholar
  30. 30.
    Hiley, B.: Time from an algebraic theory of moments. Talk presented at the Parmenides Workshop “The Forgotten Present”, April 29th–May 1st, 2010 Google Scholar
  31. 31.
    Isham, C., Linden, N.: Continuous histories and the history group in generalised quantum theory. J. Math. Phys. 36, 5392–5408 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. Wiley, New York (1974) Google Scholar
  33. 33.
    Kumar, M.: Quantum—Einstein, Bohr and the Great Debate About the Nature of Reality. Ikon Books (2008) Google Scholar
  34. 34.
    Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Mahler, G.: Temporal Bell inequalities: a journey to the limits of “Consistent Histories”. In: Atmanspacher, H., Dalenoort, G. (eds.) Inside Versus Outside. Endo- and Exo-Concepts of Observation and Knowledge in Physics, Philosophy and Cognitive Science, pp. 195–205. Springer, Berlin (1994) CrossRefGoogle Scholar
  36. 36.
    Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Gustafson, K.: A Zeno story. Quant. Comput. Comput. 35(2), 35–55 (2003) MathSciNetGoogle Scholar
  38. 38.
    Olkhovsky, V.S., Recami, E., Gerasimchuk, A.J.: Time operator in quantum mechanics. Nuovo Cimento 22A(2), 263–278 (1974) MathSciNetADSGoogle Scholar
  39. 39.
    Omnés, R.: From Hilbert space to common sense: a synthesis of recent progress in the interpretation of quantum mechanics. Ann. Phys. 201, 354 (1990) ADSCrossRefGoogle Scholar
  40. 40.
    Omnés, R.: Consistent interpretations of quantum mechanics. Rev. Mod. Phys. 64, 339 (1992) ADSCrossRefGoogle Scholar
  41. 41.
    Pais, A.: ‘Subtle is the Lord’ … The Science and the Life of Albert Einstein. Oxford University Press, New York (1982) Google Scholar
  42. 42.
    Pöppel, E.: A hierarchical model of temporal perception. Trends Cogn. Sci. 1, 56–61 (1997) CrossRefGoogle Scholar
  43. 43.
    Savvidou, K.: The action operator for continuous-time histories. J. Math. Phys. 40, 5657 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    Wang, Z.Y., Xiong, C.D.: How to introduce time operator. Ann. Phys. 322, 2304–2314 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Weyl, H.: Space-Time-Matter. Constable, London (1922) zbMATHGoogle Scholar
  46. 46.
    Wilde, M.M., Mizel, A.: Addressing the clumsiness loophole in a Leggett-Garg test of macrorealism. Found. Phys. 42(2), 256–265 (2012) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of FreiburgFreiburg im BreisgauGermany
  2. 2.Parmenides Center for the Study of ThinkingMunichGermany

Personalised recommendations