Foundations of Physics

, Volume 42, Issue 9, pp 1165–1185 | Cite as

The Universal Arrow of Time

Article

Abstract

Statistical physics cannot explain why a thermodynamic arrow of time exists, unless one postulates very special and unnatural initial conditions. Yet, we argue that statistical physics can explain why the thermodynamic arrow of time is universal, i.e., why the arrow points in the same direction everywhere. Namely, if two subsystems have opposite arrow-directions at a particular time, the interaction between them makes the configuration statistically unstable and causes a decay towards a system with a universal direction of the arrow of time. We present general qualitative arguments for that claim and support them by a detailed analysis of a toy model based on the baker’s map.

Keywords

Time arrow Entropy increase Baker’s map 

References

  1. 1.
    Reichenbach, H.: The Direction of Time. University of California Press, Los Angeles (1971) Google Scholar
  2. 2.
    Davies, P.C.W.: The Physics of Time Asymmetry. Surrey University Press, London (1974) Google Scholar
  3. 3.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, London (1989) Google Scholar
  4. 4.
    Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996) Google Scholar
  5. 5.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Heidelberg (2007) MATHGoogle Scholar
  6. 6.
    Maccone, L.: Phys. Rev. Lett. 103, 080401 (2009) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Vaidman, L.: arXiv:quant-ph/9609006
  8. 8.
    Kupervasser, O.: arXiv:nlin/0407033
  9. 9.
    Kupervasser, O.: arXiv:nlin/0508025
  10. 10.
    Jennings, D., Rudolph, T.: Phys. Rev. Lett. 104, 148901 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Kupervasser, O., Laikov, D.: arXiv:0911.2610
  12. 12.
    Nikolić, H.: arXiv:0912.1947
  13. 13.
    Maccone, L.: arXiv:0912.5394
  14. 14.
    Zeh, H.D.: Entropy 7, 199 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Zeh, H.D.: Entropy 8, 44 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    Kupervasser, O.: arXiv:0911.2076
  17. 17.
    Thomson, W.: Proc. R. Soc. Edinb. 8, 325 (1874). Reprinted in Brush, S.G., Kinetic Theory (Pergamon, Oxford, 1966) MATHGoogle Scholar
  18. 18.
    Lebowitz, J.L.: Turk. J. Phys. 19, 1 (1995). arXiv:cond-mat/9605183 ADSGoogle Scholar
  19. 19.
    Ellis, G.F.R.: Gen. Relativ. Gravit. 38, 1797 (2006) ADSMATHCrossRefGoogle Scholar
  20. 20.
    Nikolić, H.: Found. Phys. Lett. 19, 259 (2006) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
  22. 22.
    Prigogine, I.: From Being to Becoming. Freeman, New York (1980) Google Scholar
  23. 23.
    Elskens, Y., Kapral, R.: J. Stat. Phys. 38, 1027 (1985) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Gaspard, P.: J. Stat. Phys. 68, 673 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Hartmann, G.C., Radons, G., Diebner, H.H., Rossler, O.E.: Discrete Dyn. Nat. Soc. 5, 107 (2000) MATHCrossRefGoogle Scholar
  26. 26.
    Schulman, L.S.: Phys. Rev. Lett. 83, 5419 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Schulman, L.S.: Entropy 7, 208 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Bricmont, J.: arXiv:chao-dyn/9603009
  29. 29.
    Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977) MATHGoogle Scholar
  30. 30.
    Borel, E.: Le Hasard. Alcan, Paris (1914) Google Scholar
  31. 31.
    Driebe, D.J.: Fully Chaotic Maps and Broken Time Symmetry. Kluwer Academic, Dordrecht (1999) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Oleg Kupervasser
    • 1
  • Hrvoje Nikolić
    • 2
  • Vinko Zlatić
    • 2
  1. 1.Scientific Research Computer CenterMoscow State UniversityMoscowRussia
  2. 2.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations