Foundations of Physics

, Volume 42, Issue 8, pp 1015–1030 | Cite as

An Improved Limit on Pauli-Exclusion-Principle Forbidden Atomic Transitions

  • S. R. Elliott
  • B. H. LaRoque
  • V. M. Gehman
  • M. F. Kidd
  • M. Chen


We have examined the atomic theory behind recent constraints on the violation of the Pauli Exclusion Principle derived from experiments that look for X-rays emitted from conductors while a large current is present. We also re-examine the assumptions underlying such experiments. We use the results of these studies to assess pilot measurements to develop an improved test of the Principle. We present an improved limit of \(\frac{1}{2}\beta^{2} < 2.6\times10^{-39}\) on the Pauli Exclusion Principle. This limit is the best to date for interactions between a system of fermions and a fermion that has not previously interacted with that given system. That is, for systems that do not obviously violate the Messiah-Greenberg symmetrization-postulate selection rule.


Pauli exclusion principle 



We gratefully acknowledge the support of the U.S. Department of Energy, Office of Nuclear Physics under Contract No. 2011LANLE9BW. MHC’s work was performed under the auspices of the U.S. Department of energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We thank Keith Rielage and Yuri Efremenko for a careful reading of the manuscript. We thank Larry Rodriguez and Harry Salazar for helpful technical discussions. We thank P. Vogel, R. Mohapatra, and O.W. Greenberg for useful discussions of the theory.


  1. 1.
    Aalseth, C.E., et al.: Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys. Rev. Lett. 106, 131301 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    Amado, R.D., Primakoff, H.: Comments on testing the Pauli principle. Phys. Rev. C 22, 1338 (1980) ADSCrossRefGoogle Scholar
  3. 3.
    Arnold, R., et al.: Testing the Pauli exclusion principle with the NEMO-2 detector. Eur. Phys. J. A 6, 361 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    Back, H.O., et al.: New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility. Eur. Phys. J. C 37, 421 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    Barabash, A.: Experimental test of the Pauli exclusion principle (2009) Google Scholar
  6. 6.
    Barabash, A.S., Kornoukhov, V.N., Tspenyuk, Yu.M., Chapyzhnikov, B.A.: Search for anomalous carbon atoms—evidence of violation of the Pauli principle during the period of nucleosynthesis. JETP Lett. 68, 112 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    Baron, E., Mohapatra, R.N., Teplitz, V.L.: Limits on Pauli principle violation by nucleons. Phys. Rev. D 59, 036003 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    Bartalucci, S., et al.: New experimental limit on the Pauli exclusion principle violation by electrons. Phys. Lett. B 641, 18 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    Bartalucci, S., et al.: The VIP experimental limit on the Pauli exclusion principle violation by electrons. Found. Phys. 40, 765 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Belli, P., et al.: New experimental limit on the electron stability and non-paulian transitions in Iodine atoms. Phys. Lett. B 460, 236 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    Bellini, G., et al.: New experimental limits on the Pauli forbidden transitions in 12C nuclei obtained with 485 days Borexino data. Phys. Rev. C 81, 034317 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Bernabei, R., et al.: Search for non-paulian transitions in 23Na and 127I. Phys. Lett. B 408, 439 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    Bernabei, R., et al.: New search for processes violating the Pauli exclusion principle in sodium and in iodine. Eur. Phys. J. C 62, 327 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Boswell, M., et al.: MaGe—a Geant4-based Monte Carlo application framework for low-background germanium experiments (2011) Google Scholar
  15. 15.
    Budjáš, D., Heider, M.B., Chkvorets, O., Khanbekov, N., Schönert, S.: Pulse shape discrimination studies with a Broad-Energy Germanium detector for signal identification and background suppression in the GERDA double beta decay experiment. J. Instrum. 4, P10007 (2009) CrossRefGoogle Scholar
  16. 16.
    Budjáš, D., Heisel, M., Maneschg, W., Simgen, H.: Optimisation of the MC-model of a p-type Ge-spectrometer for the purpose of efficiency determination. Appl. Radiat. Isot. 67, 706 (2009) CrossRefGoogle Scholar
  17. 17.
    Chow, C.-K., Greenberg, O.W.: Quons in relativistic theories must be bosons or fermions. Phys. Lett. A 283, 20 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Corinaldesi, E.: Model of a dynamical theory of the Pauli principle. Suppl. Nuovo Cim. I5, 937 (1967) Google Scholar
  19. 19.
    Deilamian, K., Gillaspy, J.D., Kelleher, D.E.: Small violations of the symmetrization postulate in an excited state of helium. Phys. Rev. Lett. 74, 4787 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    Dolgov, A.D., Hansen, S.H., Smirnov, Y.A.: Neutrino statistics and big bang nucleosynthesis. J. Cosmol. Astropart. Phys. 6, 4 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    Ejiri, H., Toki, H.: Search for exotic nuclear transitions associated with nuclear instability. Phys. Lett. B 306, 218 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    Elliott, S.R., et al.: Proceedings of the Carolina International Symposium on Neutrino Physics, vol. 173. IOP Publishing, London (2010) Google Scholar
  23. 23.
    Goldhaber, M., Scharff-Goldhaber, G.: Identification of beta-rays with atomic electrons. Phys. Rev. 73, 1472 (1948) ADSCrossRefGoogle Scholar
  24. 24.
    Govorkov, A.B.: Can the Pauli principle be deduced with local quantum field theory? Phys. Lett. A 137, 7 (1989) ADSCrossRefGoogle Scholar
  25. 25.
    Greenberg, O.W.: Particles with small violations of Fermi or Bose statistics. Phys. Rev. D 43, 4111 (1991) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Greenberg, O.W.: Theories of violation of statistics. AIP Conf. Proc. 545, 113 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    Greenberg, O.W., Mohapatra, R.N.: Local quantum field theory of possible violation of the Pauli principle. Phys. Rev. Lett. 59, 2507 (1987) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Greenberg, O.W., Mohapatra, R.N.: Phenomenology of small violations of Fermi and Bose statistics. Phys. Rev. D 39, 2032 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    Guiseppe, V.E., et al.: The Majorana neutrinoless double-beta decay experiment. In: Nucl. Sci. Symp. Conf. Rec. NSS’08, p. 1793 (2008) Google Scholar
  30. 30.
    Haff, P.K., Vogel, P., Winther, A.: Capture of negative muons in atoms. Phys. Rev. A 10, 1430 (1974) ADSCrossRefGoogle Scholar
  31. 31.
    Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics Internet Version, 91st edn. CRC Press/Taylor and Francis, Boca Raton (2011) (Internet Version 2011) Google Scholar
  32. 32.
    Howe, M.A., Cox, G.A., Harvey, P.J., McGirt, F., Rielage, K., Wilkerson, J.F., Wouters, J.M.: Sudbury neutrino observatory neutral current detector acquisition software overview. IEEE Trans. Nucl. Sci. 51, 878–883 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    Ignatiev, A.Y., Kuzmin, V.A.: Is a weak violation of the Pauli principle possible? Sov. J. Nucl. Phys. 461, 786 (1987) Google Scholar
  34. 34.
    Javorsek, D. II, et al.: New experimental test of the Pauli exclusion principle using accelerator mass spectrometry. Phys. Rev. Lett. 85, 2701 (2000) ADSCrossRefGoogle Scholar
  35. 35.
    Kekez, D., Ljubičić, A., Logan, B.A.: An upper limit to violations of the Pauli exclusion principle. Nature 348, 224 (1990) ADSCrossRefGoogle Scholar
  36. 36.
    Kim, Y.S., Pratt, R.H.: Radiative recombination of electrons with atomic ions: cross sections and rate coefficients. Phys. Rev. A 27, 2913 (1983) ADSCrossRefGoogle Scholar
  37. 37.
    Kishimoto, T., et al.: Search for violation of the Pauli principle through spontaneous neutron emission from lead. J. Phys. G 18, 443 (1992) ADSCrossRefGoogle Scholar
  38. 38.
    Logan, B., Ljubičić, A.: Validity of the Pauli exclusion principle for nucleons. Phys. Rev. C 20, 1957 (1979) ADSCrossRefGoogle Scholar
  39. 39.
    Messiah, A.M.L., Greenberg, O.W.: Symmetrization postulate and its experimental foundation. Phys. Rev. 136, B248 (1964) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Miljanić, D., et al.: Test of the Pauli principle in nuclear reactions. Phys. Lett. B 252, 487 (1990) ADSCrossRefGoogle Scholar
  41. 41.
    Nolte, E., et al.: Accelerator mass spectrometry for tests of the Pauli exclusion principle and for detection of beta beta decay products. J. Phys. G, Nucl. Part. Phys. 17, S355 (1991) ADSCrossRefGoogle Scholar
  42. 42.
    Novikov, V.M., et al.: Test of the Pauli exclusion principle for atomic electrons. Phys. Lett. B 240, 227 (1990) ADSCrossRefGoogle Scholar
  43. 43.
    Okun, L.B.: Possible violation of the Pauli principle in atoms. JETP Lett. 46, 529 (1987) ADSGoogle Scholar
  44. 44.
    Okun, L.B.: Tests of electric charge conservation and the Pauli principle. Phys. Usp. 158, 293 (1989). Sov. Phys. Usp. 32, 543 (1989) CrossRefGoogle Scholar
  45. 45.
    ORTEC: 801 South Illinois Avenue Oak Ridge, TN 37830, USA (2009) Google Scholar
  46. 46.
    Pauli, W.: Uber den Zusammenhang des Abschlusses der Elektronen- gruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765 (1925) ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Plaga, R.: Violations of the Pauli principle and the interior of the sun. Z. Phys. A 333, 397 (1989) ADSGoogle Scholar
  48. 48.
    Ramberg, E., Snow, G.A.: Experimental limit on a small violation of the Pauli principle. Phys. Lett. B 238, 438 (1990) ADSCrossRefGoogle Scholar
  49. 49.
    Reines, F., Sobel, H.W.: Test of the Pauli exclusion principle for atomic electrons. Phys. Rev. Lett. 32, 954 (1974) ADSCrossRefGoogle Scholar
  50. 50.
    Shimony, A.: Proposed experiment to test the possible time dependence of the onset of the Pauli exclusion principle. Quantum Inf. Process. 5, 277 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Suzuki, Y., et al.: Study of invisible nucleon decay, \(n \rightarrow\nu\nu\bar {\nu }\), and a forbidden nuclear transition in the Kamiokande Detector. Phys. Lett. B 311, 357 (1993) ADSCrossRefGoogle Scholar
  52. 52.
    Thoma, M.H., Nolte, E.: Limits on small violations of the Pauli exclusion principle in the primordial nucleosynthesis. Phys. Lett. B 291, 484 (1992) ADSCrossRefGoogle Scholar
  53. 53.
    Zerrad, E., Hahn, Y.: Radiative recombination at low energies. J. Quant. Spectrosc. Radiat. Transf. 59, 637 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. R. Elliott
    • 1
  • B. H. LaRoque
    • 1
    • 4
  • V. M. Gehman
    • 1
    • 3
  • M. F. Kidd
    • 1
  • M. Chen
    • 2
  1. 1.Physics DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of Physics and Life SciencesLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Physics DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations