Foundations of Physics

, Volume 42, Issue 5, pp 688–708 | Cite as

Stabilizer Notation for Spekkens’ Toy Theory

Article

Abstract

Spekkens has introduced a toy theory (Spekkens in Phys. Rev. A 75(3):032110, 2007) in order to argue for an epistemic view of quantum states. I describe a notation for the theory (excluding certain joint measurements) which makes its similarities and differences with the quantum mechanics of stabilizer states clear. Given an application of the qubit stabilizer formalism, it is often entirely straightforward to construct an analogous application of the notation to the toy theory. This assists calculations within the toy theory, for example of the number of possible states and transformations, and enables superpositions to be defined for composite systems.

Keywords

Epistemic view Toy theory Stabilizer 

References

  1. 1.
    Spekkens, R.W.: Phys. Rev. A 75(3), 032110 (2007). http://link.aps.org/doi/10.1103/PhysRevA.75.032110 ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Phys. Rev. A 68, 022312 (2003). http://link.aps.org/doi/10.1103/PhysRevA.68.022312 ADSCrossRefGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  5. 5.
    Caves, C.M.: Stabilizer formalism for qubits (2006). http://info.phys.unm.edu/~caves/reports/reports.html. Internal report
  6. 6.
    Dehaene, J., De Moor, B.: Phys. Rev. A 68(4), 042318 (2003). http://link.aps.org/doi/10.1103/PhysRevA.68.042318 MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69(20), 2881 (1992). http://link.aps.org/doi/10.1103/PhysRevLett.69.2881 MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Spekkens, R.W.: The power of epistemic restrictions in reconstructing quantum theory (2009). http://pirsa.org/09080009/. Perimeter Institute Recorded Seminar Archive, PIRSA:0908009
  9. 9.
    Coecke, B., Edwards, B.: Electron. Notes Theor. Comput. Sci. 270(1), 29 (2011). doi:10.1016/j.entcs.2011.01.004 CrossRefGoogle Scholar
  10. 10.
    Aaronson, S., Gottesman, D.: Phys. Rev. A 70(5), 052328 (2004). http://link.aps.org/doi/10.1103/PhysRevA.70.052328 ADSCrossRefGoogle Scholar
  11. 11.
    Audenaert, K.M.R., Plenio, M.B.: New J. Phys. 7(1), 170 (2005). http://stacks.iop.org/1367-2630/7/i=1/a=170 ADSCrossRefGoogle Scholar
  12. 12.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 59(2), 1070 (1999). http://link.aps.org/doi/10.1103/PhysRevA.59.1070 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Short, A.J., Barrett, J.: New J. Phys. 12(3), 033034 (2010). http://stacks.iop.org/1367-2630/12/i=3/a=033034 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Hein, M., Eisert, J., Briegel, H.J.: Phys. Rev. A 69(6), 062311 (2004). http://link.aps.org/doi/10.1103/PhysRevA.69.062311 MathSciNetADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
    Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Phys. Rev. A 70(6), 062101 (2004). http://link.aps.org/doi/10.1103/PhysRevA.70.062101 MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Gross, D.: J. Math. Phys. 47(12), 122107 (2006). http://link.aip.org/link/?JMP/47/122107/1 MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.QOLS, Blackett LaboratoryImperial College LondonLondonUK

Personalised recommendations