Foundations of Physics

, Volume 42, Issue 5, pp 688–708 | Cite as

Stabilizer Notation for Spekkens’ Toy Theory

  • Matthew F. Pusey


Spekkens has introduced a toy theory (Spekkens in Phys. Rev. A 75(3):032110, 2007) in order to argue for an epistemic view of quantum states. I describe a notation for the theory (excluding certain joint measurements) which makes its similarities and differences with the quantum mechanics of stabilizer states clear. Given an application of the qubit stabilizer formalism, it is often entirely straightforward to construct an analogous application of the notation to the toy theory. This assists calculations within the toy theory, for example of the number of possible states and transformations, and enables superpositions to be defined for composite systems.


Epistemic view Toy theory Stabilizer 



I am grateful to my supervisors Terry Rudolph and Jonathan Barrett for many helpful discussions. I am particularly indebted to Terry for devising the representation of G n used here. I acknowledge financial support from the EPSRC.


  1. 1.
    Spekkens, R.W.: Phys. Rev. A 75(3), 032110 (2007). ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Phys. Rev. A 68, 022312 (2003). ADSCrossRefGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  5. 5.
    Caves, C.M.: Stabilizer formalism for qubits (2006). Internal report
  6. 6.
    Dehaene, J., De Moor, B.: Phys. Rev. A 68(4), 042318 (2003). MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69(20), 2881 (1992). MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Spekkens, R.W.: The power of epistemic restrictions in reconstructing quantum theory (2009). Perimeter Institute Recorded Seminar Archive, PIRSA:0908009
  9. 9.
    Coecke, B., Edwards, B.: Electron. Notes Theor. Comput. Sci. 270(1), 29 (2011). doi: 10.1016/j.entcs.2011.01.004 CrossRefGoogle Scholar
  10. 10.
    Aaronson, S., Gottesman, D.: Phys. Rev. A 70(5), 052328 (2004). ADSCrossRefGoogle Scholar
  11. 11.
    Audenaert, K.M.R., Plenio, M.B.: New J. Phys. 7(1), 170 (2005). ADSCrossRefGoogle Scholar
  12. 12.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 59(2), 1070 (1999). MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Short, A.J., Barrett, J.: New J. Phys. 12(3), 033034 (2010). MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Hein, M., Eisert, J., Briegel, H.J.: Phys. Rev. A 69(6), 062311 (2004). MathSciNetADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
    Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Phys. Rev. A 70(6), 062101 (2004). MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Gross, D.: J. Math. Phys. 47(12), 122107 (2006). MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.QOLS, Blackett LaboratoryImperial College LondonLondonUK

Personalised recommendations